DOI: 10.14005/j.cnki.issn1672-7673.20210415.001

W波段宽带正交模耦合器设计*

谈超^{1,2},李斌¹

(1. 中国科学院上海天文台, 上海 200030; 2. 中国科学院大学, 北京 100049)

摘要:W波段接收机系统能有效接收多条重要的射电天文分子谱线信息,对于天文观测和科学研究有重要意义。W波段正交模耦合器(Ortho-Mode Transducer, OMT)作为接收机系统实现极化分离的关键器件,其性能对接收机整体性能有重要影响。介绍了一款基于Boifot 结构的W波段宽带正交模耦合器,并介绍了正交模耦合器的工作原理和设计流程。仿真结果表明,在70~116 GHz频带内,正交模耦合器相对带宽达到49.4%,回波损耗优于18.7 dB,交叉极化优于55.8 dB,端口隔离度优于54 dB。 关键词: 正交模耦合器;宽带;Boifot 结构;W波段

中图分类号: TN662 文献标识码: A 文章编号: 1672-7673(2021)04-0477-05

₩ 波段覆盖了多条重要天文观测分子谱线,其中包括恒星形成区分子云气体含量第二的一氧化碳及同位素分子谱线,在此波段能有效地研究恒星形成区分子云的气体组成、分布结构及运动演化。因此 W 波段是研究银河系及河外星系内恒星形成机制的重要观测波段,对于天文观测和科学研究有重要意义。

在射电天文接收机系统中,天体射电源发出的微弱信号由大口径天线收集,在天线焦点处通过与 天线光路匹配的馈源馈入接收系统,经过 90°移相器进行圆极化转换,或者直接经过正交模耦合器将 公共端口的电磁波正交分解为两路线极化信号,再由后级电路进行放大、滤波、变频和数字化处 理^[1]。正交模耦合器是接收机前端的关键无源器件,将从公共通道输入的两路正交线极化信号分离 到两路单一输出通道,并使两路输出通道匹配且保持较高的隔离度。宽带正交模耦合器在卫星通信、 军事雷达、射电天文上有广泛的应用。

由于金属波导的传播特性,正交模耦合器的工作带宽是整个射电天文望远镜系统工作带宽的瓶颈^[2]。随着频率增加,正交模耦合器的尺寸相应减小,加工装配误差对正交模耦合器电磁性能恶化的影响愈发严重。因此,在扩展工作带宽提高频率的同时,如何降低加工装配误差对正交模耦合器性能恶化的影响,成为现阶段研究的主要内容^[3]。本文介绍了一种宽带正交模耦合器,该正交模耦合器工作在W波段,结构紧凑,易于加工,全频带电磁性能优异,能够降低加工装配误差对正交模耦合器电磁性能的不利影响,最后用电磁仿真软件进行设计验证。

1 正交模耦合器模型选择

正交模耦合器的主要性能指标有工作带宽、回波损耗、插入损耗、交叉极化和端口隔离度等。正 交模耦合器可以按照工作频带划分为窄带正交模耦合器和宽带正交模耦合器。带宽不同,正交模耦合 器形式也不同。有针对低频宽带使用的四脊形正交模耦合器和旋转节正交模耦合器,有适用于较高频 率的 Boifot^[4]结构正交模耦合器、十字转门(Turnstile)^[5]结构正交模耦合器等。这些正交模耦合器形 式各异,各有优缺点,选择模型时需要综合考虑工作频率、工作带宽、加工装配复杂度等因素。虽然

^{*} 基金项目: 国家自然科学基金 (12073064) 资助.

收稿日期: 2021-01-07; 修订日期: 2021-01-27

作者简介:谈超,男,硕士.研究方向:微波无源器件. Email: mytcnum@qq.com

正交模耦合器形式各异,但核心设计思想一致:设计只传输一个电磁波传播模式的结构,迫使另一个 模式的电磁波只能从其他路径传输^[6]。对于毫米波段宽带正交模耦合器设计而言,由于尺寸更小, 加工装配误差带来的性能恶化更加严重,设计过程中我们要更多考虑如何在保证一定电磁性能指标的 前提下,尽可能使工作带宽扩大,降低模型加工复杂度。

一些结构不对称的正交模耦合器在窄带有良好的性能,但是隔离度相对较差^[7]。由于波导不连续性激励的高次模使正交模耦合器性能恶化,为了抑制高次模的产生,在宽带正交模耦合器设计中, 主要采取对称结构形式。根据实际设计需求,我们初步选择基于 Boifot 和十字转门结构的两款正交模 耦合器。基于十字转门结构的正交模耦合器适用于高频率、高带宽,其输入口可以直接与馈源相接, 不需要额外设计方--圆波导过渡^[8-9]。但考虑到加工复杂,结构较 Boifot 正交模耦合器臃肿,且插入 损耗较高。而 Boifot 结构正交模耦合器结构紧凑,加工复杂度相对较小^[10],插入损耗小,在较宽频 带有良好的电磁特性,最终本文选择基于 Boifot 结构的双脊波导正交模耦合器。模型如图 1。

图 1 Boifot 结构正交模耦合器示意图 Fig. 1 A schematic diagram of Boifot OMT

2 正交模耦合器设计

由于器件结构复杂,我们通过分析正交模耦合器工作原理,将模型分为 Boifot 接头、E 面转弯、 Y 型功率合成器 3 个独立部分进行预设计,每部分结构分别仿真优化,再整体仿真优化,可有效提高 设计效率,缩短设计周期。

2.1 Boifot 接头设计

Boifot 接头是正交模耦合器模型的核心部分,两路正交线极化信号从接头的公共方端口进入并分 离到其他端口,每个路径的端口仅含有一个主模。Boifot 接头中的阶梯双脊结构对纵向电磁波信号 (图 1 Pol.V)呈容性,能有效聚集纵向电磁波能量,防止纵向电磁波信号传播到阶梯双脊结构两侧, 使纵向电磁波信号传播模式从波导传播变为脊波导传播,后经 E 面转弯由 WR10标准矩波导输出。 而横向电磁波信号(图 1 Pol.H 信号)经过阶梯双脊结构在功率分配后分别沿阶梯双脊两侧传输,后经 Y 型功率合成器合为一路由 WR10标准矩波导输出。

阶梯双脊结构对 Boifot 接头性能有重要影响。除了极化分离,阶梯双脊结构的阶梯过渡实现 TE₁₀ 模式(Pol.V)的阻抗匹配,双脊两侧切角实现 TE₀₁模式(Pol.H)的-3 dB 信号到侧臂波导出口的匹配。 本文 Boifot 接头设计中没有采用宽度、高度均改变的阶梯双脊结构,而采用宽度一致、单侧高度变化 的阶梯双脊结构,既满足设计指标,也能有效降低加工复杂度。经过软件建模仿真优化,Boifot 接头 模型示意图和回波损耗如图 2 和图 3。

2.2 E 面转弯设计

E 面转弯能把经 Boifot 接头分离的 TE₁₀模式信号匹配输出到 WR10 标准矩形波导。此结构核心是

阻抗变换器的设计。

截面尺寸为 $a \times b$,内填空气的矩波导阻抗计算公式为^[11]

$$z_{e} = \frac{b}{a} \times \frac{\sqrt{\frac{\mu}{\varepsilon}}}{\sqrt{1 - \left(\frac{\lambda}{2a}\right)^{2}}}, \qquad (1)$$

其中, μ 为空气磁导率; ε 为空气介电常数; λ 为空气中电磁波波长。

切比雪夫阻抗变换^[12]可使 E 面转弯在宽频 带工作,增加阶梯数目可扩展带宽。我们利用 (1)式计算波导阻抗,根据切比雪夫阻抗变换计 算各级变换阻抗值,再反推各级阶梯截面尺寸, 阶梯长度均选定为 $\lambda_g/4$,其中 λ_g 表示在中心频 率的波导波长。

经过前期计算和软件建模仿真优化, E 面转 弯模型示意图和回波损耗如图 4 和图 5。

2.3 Y型功率合成器设计

Y型功率合成器将 Boifot 接头 TE₀₁信号分离 的两路横向电磁波合成,并变换到 WR10 标准矩 波导输出。Y型功率合成器主要由 90°弯波导和 阶梯阻抗变换器组成。此部分采用对称结构,能 有效抑制由于非对称结构引起的高次模,在宽频 带保持良好的驻波和隔离特性。本模型的弯波导 采用 90°圆弧弯形式,阶梯阻抗变换设计流程与 前文 E 面转弯阶梯阻抗变换的设计流程一致。 经过软件建模仿真优化,Y型功率合成器模型的 结构图和回波损耗如图 6 和图 7。

Fig. 3 Return loss of Boifot junction

3 整体仿真分析

完成上述 3 个模块预设计后,我们将 Boifot 接头、E 面转弯和 Y 型功率合成器整合建立完整的正 交模耦合器模型,并进行整体仿真优化,最终得到仿真结果如图 8 和图 9。

由仿真结果可见,正交模耦合器电磁性能优异,满足设计要求:在70~116 GHz 频带内回波损耗 大致优于20 dB,端口隔离度、交叉极化大致优于55 dB。仿真结果在若干频率出现毛刺,表明波导腔 体可能在对应频率产生谐振。

4 总 结

本文介绍了正交模耦合器的原理以及应用背景,并叙述了正交模耦合器的设计流程,设计了一款 基于 Boifot 结构的宽带正交模耦合器。该正交模耦合器体积 19.1 mm×19.1 mm×28 mm,结构紧凑, 易于加工装配。在达到 49.4%的相对带宽前提下,70~116 GHz 频带内拥有良好的电磁性能:全频带 回波损耗优于 18.7 dB,交叉极化优于 55.8 dB,端口隔离度优于 54 dB,电磁性能满足实际需求。本 文采用将正交模耦合器按功能分成 3 部分进行预设计,再将 3 部分结合进行整体仿真优化的方法,有 效提高了设计效率,为以后的工程应用提供了理论准备和技术积累。

参考文献:

[1] 贾茹,李斌. 天马望远镜 Ka 波段宽带圆极化器研制 [J]. 天文研究与技术, 2017, 14(4): 488-494.

JIA R, LI B. Development of Ka-band wideband circular polarizer [J]. Astronomical Research

& Technology, 2017, 14(4): 488-494.

- [2] 陈卯蒸, 宁云炜, 马军. 基于 Turnstile 结构的超宽带正交模耦合器研究 [J]. 无线电工程, 2016, 46(10): 54-57.
 CHEN M Z, NING Y W, MA J. Study of a Turnstile ultra wideband waveguide orthomode transducer [J]. Radio Engineering, 2016, 46(10): 54-57.
- [3] 王涛,张文静. 宽带正交模耦合器的设计 [J]. 无线电工程, 2013, 43(3): 40-43.
 WANG T, ZHANG W J. Design on wide band orthomode transducer [J]. Radio Engineering, 2013, 43(3): 40-43.
- [4] BOFIOT A M, LIER E, SCHAUG-PETTERSEN T. Simple and broadband orthomode transducer
 [J]. IEEE Proceedings- H Microwaves, Antennas and Propagation, 1990, 137(6): 396-400.
- [5] ARAMAKI Y, YONEDA N, MIYAZAKI M, et al. Ultra-thin broadband OMT with turnstile junction [C] // IEEE MTT-S International Microwave Symposium Diges. 2003: 47-50.
- [6] 王海伦,李斌. K 波段宽带圆极化器设计 [J]. 天文研究与技术, 2015, 12(4): 455-460.
 WANG H L, LI B. A design of a K-band circular polarizer [J]. Astronomical Research & Technology, 2015, 12(4): 455-460.
- [7] UHER J, BORNEMANN J, ROSENBERG U. Waveguide components for antenna feed systems: theory and CAD [M]. Norwood: Artech House, 1993: 371-445.
- [8] HENKE D, CLAUDE S. Design of a 70-116 GHz W-band turnstile OMT [C] // Proceedings of the 44th European Microwave Conference. 2014.
- [9] PISANO G, PIETRANERA L, ISAAK K, et al. A broadband WR10 turnstile junction orthomode transducer [J]. IEEE Microwave and Wireless Components Letters, 2007, 17(4): 286-288.
- [10] ALVARO G, ASAYAMA S. Double-ridged waveguide orthomode transducer (OMT) for the 67– 116-GHz band [J]. Journal of Infrared, Millimeter and Terahertz Waves, 2018, 39(8): 727–737.
- [11] 顾继慧. 微波技术 [M]. 北京:科学出版社, 2007: 153-155.
 GUJH. Microwave technology [M]. Beijing: Science Press, 2007: 153-155.
- [12] POZARD M. Microwave Engineering [M]. Hoboken: John Wiley & Sons Incorporation, 2011: 256-260.

A Design of W-band Broadband Ortho-mode Transducer

Tan Chao^{1,2}, Li Bin¹

(1. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China, Email: mytcnum@qq.com;2. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: The W-band receiver system can effectively receive many important spectral lines for radio astronomy observations, which is of great significance for astronomical observations and scientific research. As a crucial component of the receiver system, the W-band ortho-mode transducer is important to achieve polarization separation and it has a considerable impact on the overall performance of the receiver system. We design a W-band broadband OMT based on the Boifot junction and introduce the working principle and designing process of OMT. The simulation results show that the relative bandwidth of OMT reaches 49. 4%, the return loss is better than 18.7 dB, the cross-polarization is better than 55.8 dB, and the port isolation is better than 54 dB in the 70–116 GHz band.

Key words: Ortho-Mode Transducer; broadband; Boifot junction; W-band