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Abstract: Astronomical spectroscopy is crucial for exploring the physical properties, chemical composition, and
kinematic behavior of celestial objects. With continuous advancements in observational technology, astronomical
spectroscopy faces the dual challenges of rapidly expanding data volumes and relatively lagging data processing
capabilities. In this context, the rise of artificial intelligence technologies offers an innovative solution to address these
challenges. This paper analyzes the latest developments in the application of machine learning for astronomical spectral
data mining and discusses future research directions in Al-based spectral studies. However, the application of machine
learning technologies presents several challenges. The high complexity of models often comes with insufficient
interpretability, complicating scientific understanding. Moreover, the large-scale computational demands place higher
requirements on hardware resources, leading to a significant increase in computational costs. Al-based astronomical
spectroscopy research should advance in the following key directions. First, develop efficient data augmentation
techniques to enhance model generalization capabilities. Second, explore more interpretable model designs to ensure
the reliability and transparency of scientific conclusions. Third, optimize computational efficiency and reduce the
threshold for deep-learning applications through collaborative innovations in algorithms and hardware. Furthermore,
promoting the integration of cross-band data processing is essential to achieve seamless integration and comprehensive
analysis of multi-source data, providing richer, multidimensional information to uncover the mysteries of the universe.
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ments such as the interstellar medium, interstellar molecu-
lar clouds, planetary nebulae, and star-forming regions.

Astronomical spectroscopic observations are an impor-  Astronomical spectroscopy is an important tool for study-

tant part of modern astronomy, and by analyzing spectro-
scopic data from celestial objects, scientists can obtain
key information about the chemical composition, physi-
cal properties, kinematic states, and the evolutionary his-
tory of their formation. Starting with the first detection of
neutral hydrogen through the 21 c¢m line at 1420.4 MHz U],
the discovery of interstellar organic molecules was one of
the four significant discoveries in astronomy in the 1960s,
following the discovery of interstellar ammonia molecules
by researchers in 1968[2] and interstellar carbon monox-
ide molecules in the Orion Nebula in 1970851 Observa-
tions of spectra have enabled astronomers to probe the
molecular composition of the universe in different environ-
ments, especially in celestial bodies and celestial environ-

ing the chemical composition, physical properties, kinemat-
ics, and dynamics of objects in the universe. Spectro-
scopic observations can be used to study the kinematics
and dynamics of objects and celestial environments in the
universel¥]; for example, observations of the strength and
velocity of emission lines can be used to study the
motions of the rotating arms of galaxiesl], to study tidal
motions of interacting galaxies, and to study turbulence
and collapse in nebulae in star-forming regions[¢l. Observa-
tions can be used to trace the chemical composition and
evolution of objects in their regions; for example, com-
plex molecules are often formed on dust particles in cold,
dense molecular clouds!’). Spectral observations can be
used in astrophysical research. For example, the galactic
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plane survey of water masers can be used to study the rela-
tionship between maser distribution and star formation
and evolution[®]. Different critical densities of molecules
reflect the gas density of their surrounding regions; for typi-
cal Ly a emitting galaxies, the hydrogen column density
is 0~1017-1020 cm 201,

The development of astronomical observation equip-
ment and technology has brought about a surge in the
amount of observation data, and the Large Sky Area
Multi-Object Fiber Spectroscopic Telescope
(LAMOST)U is the multi-target spectroscopic telescope
with the largest field of view and the highest spectral acqui-
sition rate in the international astronomical community.
The DRI11 dataset released by LAMOST in September
2024 contains more than 10® low- and medium-resolution
spectra.  Similarly, the Sloan Digital Sky Survey
(SDSS)I1 telescope generates approximately 10° spectra
per observation. The Anglo-Australian Telescope (AAT),
a collaboration between the United Kingdom and Aus-
tralia, uses a 2-degree field (2dF) multi-fiber spectro-
graph(!2] for its survey mission and has acquired spectra
of more than one million objects. The Apache Point Obser-
vatory Galactic Evolution Experiment (APOGEE)!!3] is a
high-resolution and high signal-to-noise near-infrared spec-
troscopic survey program, and the APOGEE DRI2
dataset!!4] releases ~10° red giant spectroscopic data. The
rapid increase in data volume has placed considerable pres-
sure on subsequent data preprocessing and scientific analy-
sis processes. Spectral data preprocessing must go through
background correction, skylight background removal, wave-
length calibration, flux calibration, and continuum spec-
tra fitting(!>10]. Then, according to different scientific
research objectives, the data are processed for classifica-
tion, clustering, outlier analysis, and stellar atmospheric
parameter measurementsl!”], Scientific research on spec-
tral data relies on accurately extracting continuous spec-
tral data and spectral line information in the preprocess-
ing process!!8l. Traditional spectral data preprocessing and
other processes rely on researchers using software such as
IRAF] to manually process the raw spectral data using
an interactive approach, and the preprocessing steps need
to be repeated for each spectral data file, which con-
sumes a large amount of manual time and results in ineffi-
cient data processing.

By carrying out processing such as classification, clus-
tering, outlier analysis, and stellar atmospheric parameter
measurements on astronomical spectra, information can be
deeply mined from massive data, which is of great signifi-
cance for understanding the physical properties of celes-
tial bodies, studying the chemical compositions of celes-
tial bodies, investigating the state of celestial motion and
discovering unknown celestial bodies. With the explosive
growth of spectral data, the speed of spectral data mining
has failed to develop synchronously, dramatically reduc-
ing the efficiency and scientific output of spectral data pro-
cessing. However, the rise of artificial intelligence technol-
ogy has provided a new solution to these difficulties.
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Artificial intelligence is a technological science that
studies and develops theories, methods, and application sys-
tems for modeling, extending, and expanding human intelli-
gence, often implemented using machine learning (ML)
methods. ML is a subfield of artificial intelligence that stud-
ies how to enable machines to simulate or implement
human learning behaviors by learning to model from data
through algorithms and statistical models. Deep-learning
(DL) algorithms are ML methods based on artificial neu-
ral networks, which automatically extract features layer
by layer from data by constructing multi-level neural net-
works. Commonly used DL algorithms include convolu-
tional neural networks (CNNs), recurrent neural networks
(RNNs), and generative adversarial networks (GANS).

Computational methods were introduced to astron-
omy at the end of the 20th century, when simple algo-
rithms were used to process telescope data, mainly for
tasks such as orbit calculations and basic image process-
ing. At the beginning of the 21st century, ML began to
be widely used in astronomy, with algorithms such as neu-
ral networks, support vector machines, and multilayer per-
ceptron machines being used to classify galaxies(2%], photo-
metric redshift estimation[?!l, and analyze cosmic
microwave background datal?2l. According to the data
retrieved from the Astrophysics Data System (ADS), the
trend of growth in the number of papers containing the
terms ML, DL, or deep neural network in their titles,
abstracts, and keywords is depicted in Fig. 1, and the appli-
cation of ML in astronomy has grown significantly after
2017.
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Fig. 1. Number of papers with titles, abstracts, and keywords
containing ML, DL, or deep neural network in the field of
astronomy, 2000-2023.

Traditional ML methods include perceptron, k-near-
est neighbors (kNN), decision trees, support vector
machines (SVMs), clustering techniques, singular value
decomposition (SVD), and principal component analysis



(PCA). The perceptron is a fundamental linear classifica-
tion model and one of the earliest forms of neural net-
works, which performs classification by learning a linear
relationship between input features and target categories.
The kNN method is an instance-based, nonparametric classi-
fication and regression approach. When classifying a sam-
ple, the kNN algorithm assigns a category based on the
majority vote of its kNN in the feature space. Decision
trees are a model that classifies data through a series of
decision nodes, where each node represents a decision
rule based on a feature, branches correspond to the out-
comes of these rules, and leaf nodes represent the final clas-
sification. SVM is a supervised learning algorithm primar-
ily used for classification and regression tasks. It sepa-
rates data points by constructing a hyperplane that maxi-
mizes the margin between different classes, achieving opti-
mal classification. Clustering refers to an unsupervised
learning technique to partition a dataset into distinct
groups or clusters, where data points within the same clus-
ter are highly similar, and those in different clusters
exhibit significant dissimilarity. SVD is a matrix factoriza-
tion method that decomposes a matrix into the product of
three matrices, including singular values and singular vec-
tors. It is widely applied for dimensionality reduction,
noise filtering, and data compression. PCA is a statistical
technique used for dimensionality reduction, which trans-
forms data into a new coordinate system by identifying
the principal components that capture the most variance,
reducing the number of variables while retaining essen-
tial information.

Traditional ML methods generally operate based on
specific assumptions or rules, resulting in relatively low
model computational complexity. However, the model train-
ing process heavily relies on data preprocessing, which
requires domain experts to manually extract hand-crafted
features from raw data. Traditional ML methods typically
require smaller datasets and have relatively low computa-
tional resource demands. Most models exhibit good inter-
pretability because their predictions can be easily under-
stood by analyzing model parameters or decision rules.
These models usually demonstrate good generalization abil-
ity on smaller datasets but often encounter performance bot-
tlenecks when dealing with complex, large-scale data.

McCulloch and Pitts[23] proposed the original artifi-
cial neural network model in 1943; Rosenblatt(24] invented
the perceptual machine in 1958, regarded as the predeces-
sor of feedforward neural networks, Rumelhart et al.[25]
redeveloped the backpropagation algorithm for feedfor-
ward neural network learning in 1986, and Hinton et
al.[26] introduced the concept of DL in 2006, referring to
ML that includes complex neural networks such as deep
neural networks.

An artificial neural network is a network-like ML
model composed of neuron connections inspired by biologi-
cal neural networks. It was invented to mimic the struc-

ture of the human brain and its function as an informa-
tion processing system. Artificial neural networks com-
prise an input layer, a hidden layer, and an output layer.
Fig. 2 illustrates the structure of a deep neural network
with » hidden layers; the input layer receives the input
data, each input node corresponds to a feature of the data,
the hidden layer contains multiple nodes, which process
the input data through activation functions, the number
and size of the hidden layers affects the network's complex-
ity and learning ability, and the output layer is used to gen-
erate the final output results. The output layer generates
the final output, such as category labeling in a classifica-
tion task or numerical prediction in a regression task.

Output layer

Fig. 2. Deep neural network structure with n hidden layers.

A feedforward neural network is the most representa-
tive neural network, composed of multiple layers of neu-
rons, including an input layer, hidden layer, and output
layer; the neurons between the layers are connected, the
neurons within the layers are not connected, the output of
the neurons of the former layer is the input of the neu-
rons of the latter layer, and there is no feedback in the
entire network, so the feedforward neural network cannot
memorize. The input data are passed from the input layer
to the output layer through the weighting and bias of each
layer to produce the output result.

Artificial neural networks learn by adjusting the
weights of the connections between neurons. The learn-
ing process is implemented through the backpropagation
algorithm(?31, which calculates the loss function to evalu-
ate the difference between the predicted and actual val-
ues and then updates the weights through optimization algo-
rithms such as gradient descent to make the model gradu-
ally approach the optimal solution. Feedforward neural net-
works are used primarily in classification problems, regres-
sion problems, pattern recognition, and other tasks.

A CNN is a neural network for predicting image data
(grid-structured data) with a hierarchical grid structure,
which can be regarded as a special feedforward neural net-
work. The basic structure of a CNN consists of an input
layer, a convolutional layer, a pooling layer, a fully-con-
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nected layer, and an output layer. The convolutional layer
scans the input data through a convolutional kernel, auto-
matically extracts the low-level features such as edges
and textures, and then progressively extracts the high-
level features through multilayer convolution; the pooling
layer is used for downsampling to reduce the size of the
feature maps and reduce the complexity of the computa-
tion while retaining the key information; the fully-con-
nected layer maps the previously extracted features to the
output. The fully-connected layer maps the previously
extracted features to the output, such as the results of classi-
fication or regression tasks.

The application areas of CNNs include computer
vision, natural language, and speech processing. They are
used in computer vision for tasks such as image classifica-
tion, target detection, and image segmentation, and they
are the core models in this field. Fukushimal?’! proposed
the Necocognitron model in 1980, and LeCun et al.[28] pro-
posed the LeNet-5 model in 1989 based on the inverse
propagation algorithm to propose the LeNet-5 model;
these models achieved good recognition results on small
image recognition but poor recognition results on large-

scale datal?l. Then, in 2012, Krizhevsky et al.l30 devel-
oped a CNN called AlexNet to obtain the best classifica-
tion results to date in the ImageNet large-scale image classi-
fication challenge competition.

The power of CNNs in processing high-dimensional
data such as images and signals makes it equally suitable
for spectral analysis and data classification tasks in astron-
omy. Shi et al.l3!] designed SCNet network based on the
CNN model used to classify stellar spectral images. The
model was compared with many typical classification net-
works in DL to achieve the 0.861 highest classification
accuracy; Aniyan et al.32] used CNN for radio galaxy clas-
sification, the model architecture is depicted in Fig. 3, the
number of training samples, precision, recall, F; score,
and test samples of the model are presented in Table I,
and the classification effect is comparable to the manual
classification but much faster; Keown et al.33] used CNN
for the multi-peak spectra fitting identification and classifi-
cation, which was tested on 30000 datasets consisting of
noisy, single-peak, and bimodal spectra, and the classifica-
tion accuracies reached 100%, 99.92% + 0.02%, and
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Fig. 3. CNN architecture for radio galaxy classification with output as probability scores for two galaxy classes!32].

Table 1. Class of the sources, size of the training samples for each class, precision, recall, and F; classification score for the

validation sample and the support[32!

Training samples

Class otual Augmentod Precision/(%) Recall/(%) F score/(%) Support
Bent-tailed 177 25488 95 79 87 77
FR1 125 36 000 91 91 91 53
FRII 227 32 688 75 91 83 57
Average 88 86 86 187

A RNN extends the traditional feedforward neural net-
work, which can predict the input sequence data. It learns
the hidden representation of the variable length input
sequence through the internal recurrent hidden variables;
the output of the activation function of the hidden vari-
ables at each moment depends on the output of the activa-
tion function of the recurrent hidden variables at the previ-
ous moment[34], which can use the information of the previ-
ous moment, so the RNN has the function of memory.
Fig. 4 illustrates the simple architecture of the RNN.

There are various types of RNNs, including long and
short-term memory networks, gated recurrent unit net-
works, and deep RNNs. RNNs are usually learned using
backpropagation algorithms, and their application areas
include natural language processing, speech processing,
and time series prediction.
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The transformer model is a DL model based on the
self-attention mechanismB%] and consists of two parts, the
encoder and the decoder, each consisting of several identi-
cal sublayers stacked on top of each other. Each sublayer
of the encoder mainly consists of a multi-head self-atten-
tion mechanism and a feedforward fully-connected net-
work, which generates a weighted contextual representa-
tion by calculating the attentional weights between differ-
ent positions in the input sequence and a feedforward
fully-connected network that performs independent nonlin-
ear variations of the representation at each position. Each
sublayer usually consists of two fully-connected layers
and an activation function. Each sublayer is followed by a
residual connection, and layer normalization is used to
accelerate training and stabilize the network. Each sub-
layer of the decoder consists of a multi-head self-atten-
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Fig. 4. RNN infrastructure.

tion mechanism, an encoder-decoder attention mechanism,
and a feedforward fully-connected network, where the
decoder generates a new target sequence based on the
encoder's output. Because the Transformer model does not
have a mechanism for sequential processing of sequences,
it adds positional encoding to the input embedding to per-
mit the use of sequential information from the input
sequences. Initially used for natural language processing
tasks, the Transformer model has been widely used in
astronomy for processing various types of time sequences,
spectral data, and image data.

As the core technology of artificial intelligence, ML
has gradually become an important tool for solving astro-
nomical data processing problems, given its powerful data
processing and pattern recognition capabilities. Data classifi-
cation and prediction can be conducted effectively
through the statistical model in ML. Neural networks in
DL, especially CNNS, have a strong adaptive ability to com-
plex high-dimensional data. In astronomical data process-
ing, the application of these techniques is able to not only
improve the efficiency and accuracy of data processing
but also provide more possibilities for exploring the hid-
den scientific laws of the universe. Table 2 summarizes
the commonly used models and their applications of ML
in astronomy in recent years[36-38],

Measurement of stellar atmospheric physical parame-
ters, including stellar surface effective temperature T, sur-
face gravity log g, metal abundance [Fe/H], and micro-
scopic turbulent velocity, helps to model stars of differ-
ent masses, ages, and evolutionary stages. As an impor-
tant unit of galaxies, the study of the physical parameters
of a large number of stellar atmospheres in galaxies can
reveal the evolutionary process of galaxies. There are
direct and indirect measurement methods for stellar parame-
ters, and indirect measurement methods are the primary
means of stellar atmospheric measurements at present,

including photometric methods, infrared flux methods,
Balmer line profile fitting, and spectral template fitting[36],
With the arrival of the astronomical big data era and the
rapid development of ML algorithms, data-driven stellar
atmospheric parameter measurement methods based on com-
bining ML algorithms and spectra with large data vol-
umes are the current major trends.

Stellar spectral data are complex and nonlinear, with
intricate relationships between spectra and physical parame-
ters. Extracting comprehensive information and understand-
ing the relationships between these parameters are major
challenges in spectral data mining!87l. With the promi-
nence of ML in modeling nonlinear relationships, more
studies have adopted ML methods to predict stellar spec-
tral parameters. Stellar spectral parameter estimation using
traditional ML methods usually includes two processes:
spectral feature extraction and mapping learning. Zhang et
al.[88] designed the stellar labeler SLAM based on the sup-
port vector regression technique for extracting the stellar
parameters from an extensive survey spectral dataset. The
SLAM model uses the cross-validation data of LAMOST
DR5 and APOGEE DRI15. Eight-fold cross-validation is
used during training to find the best-fitting hyperparame-
ters. The SLAM model predicts poorly for low signal-to-
noise data, and the computational cost and storage require-
ments increase significantly as the number of labels in the
training set increases. Xiang et al.[¥] have used PCA for
feature extraction by mapping spectra to feature space
using a nonlinear function. Model training and testing
revealed that the prediction results for spectral data with
Rgn = 50 were better than those for low SNR data.

Traditional ML methods rely on labeled data and
have poor prediction results for low Signal-to-Noise Ratio
(SNR) data. With the increase in data volume and the devel-
opment of DL methods, artificial neural networks have
been applied to predict atmospheric parameters of stellar
spectra. Li et al.P% proposed the StarGRUNet model
based on artificial neural networks and self-attentive learn-
ing mechanisms. The self-attentive module was used to
learn different types of spectral parameter features; the
model uses data with 5 < Rgy < 50 and Rgy = 50, the
test set contains 67340 and 100973 entries each, and the
test set contains 19240 and 28850 entries each. The
model test results reveal that for spectral data with signal-
to-noise ratios greater than or equal to 5, the prediction
accuracies of StarGRUNet for 7,4 and log g are 94 K and
0.16 dex. Li et al.Pl] constructed a deep CNN based on
the open-source python package of astrNN to predict the
abundance of nine elements in stellar spectra simultane-
ously, and to avoid the prediction error caused by the
uneven distribution of the sample set, the researcher
added a weight matrix to the loss function. Pan et al.[¢]
used feedforward neural networks for stellar atmospheric
parameter prediction, using 50000 spectral data released
by SDSS, with training and test sets of 5000 and 45000
spectra. The results of the study indicated that the mean
absolute errors for the effective temperature T, surface
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Table 2. Standard models and applications of ML in astronomy

Standard learning methods/models

Application in astronomy

Supervised learning methods:
perceptual machines, kNN, Naive
Bayes, logistic regression, SVMs,

Boosting, decision trees, and random
forests (RF)

Unsupervised learning methods:
clustering methods, SVD, PCA,
Markov Chain Monte Carlo

Traditional ML

Classification of astronomical spectral®], Classification of active
galactic nucleil*?], Classification of supernovael*!], Identification of
single pulses[#2], Radio-frequency interference suppression[*3], Search
for fast radio bursts[*4], Identification of pulsar candidates!*>],
Classification of galactic spectral4‘]

Stellar spectral analysisl4’], spectral cluster analysis!*®], Stellar
atmospheric parameter estimation[’], Hydrogen atom clock
troubleshootingl>%, Galaxy spectral classification®!], Pulsar candidate
identificationl>2], RF interference suppressionl!]

Feedforward neural networks

CNNs

DL

RNNs

Generating adversarial networks

Autoencoder

Transformer model

Galaxy photometric redshift estimation!>3], Gamma-ray burst
identification®¥, Feeder compartment fusion measurement
predictionl5], Stellar atmosphere parameter estimation(5¢!
Galaxy morphology classificationl®7], Star formation rate
measurements[>8], Spectral redshift estimation[>%], Cosmological
parameter estimation[®)], Merging galaxy clusters identification[®l],
Galactic photometric redshift predictionl2], Coronal ejecta detection[63],
Pulsar candidate identification(®4], Fast radio burst classification[6],
Radio-frequency interference detectionl®], Gravitational wave signal
detectionl®7], Stellar spectral classification [311, Stellar atmospheric
parameter prediction(®8], Fast radio burst search(%], Galaxy spectral
classification!70]

Global 21-cm spectral line signal simulationl’!], RF interference
detectionl”2], Supernova classificationl”], Strong gravitational lens
parameter prediction[74], Variable star classification[’%], Pulsar candidate
identification32], Stellar atmosphere parameter prediction [7¢], Stellar
spectral classification!?”]

Stellar spectral classificationl’8], Pulsar candidate identificationl’]
Gamma-ray burst identification!3%), Galaxy image compression and
denoising!8%, Stellar spectral classification(8!], Defective spectral
recovervis!l
Gravitational wave signal detection(®2], Stellar spectral classification[$3],
Galaxy morphology classification[®4], Photometric redshift
estimation[®4], Stellar atmospheric parameter prediction®3], Stellar

spectral restoration [35]

gravity log g, and metal abundance [Fe/H], were respec-
tively 79.95 K, 0.1706 dex, and 0.1294 dex, and the
model uses stacked self-coding neural network to effec-
tively overcome the problems of local minima and gradi-
ent dispersion in the training process of traditional back-
propagation neural network. Wang et al.[’?! proposed a stel-
lar atmospheric parameter measurement algorithm combin-
ing CNNs and RF, using CNNs to extract features from
pseudo-two-dimensional images generated based on the
spectra, extracting higher-dimensional nonlinear features
in the spectral data, and improving the prediction accu-
racy. Fabbro et al.l%8] applied a deep neural network archi-
tecture to analyze the stellar spectra, using the APOGEE
stellar spectral dataset to train the CNN model StarNet.
StarNet extracts the spectral line feature information in
the spectra by window splitting to predict the star’s effec-
tive temperature, surface gravity, metal abundance, and
other parameters. The StarNet model architecture is
depicted in Fig. 5. The initial training of the model uses
the APOGEE ASSET grid to generate 300000 synthetic
spectral data, of which 224000 were used as the training
set, 36000 as the validation set, and 40 000 as the test
set. The StarNet model and Cannon2 modell®3] were used
for training and testing on 85341 spectra of the APOGEE
DR12 dataset. The models were evaluated using mean abso-
lute error (MAE) and root mean square error (RMSE) as
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the evaluation metrics for prediction performance. The Star-
Net model had superior prediction ability, as presented in
Table 3. The StarNet model has superior prediction abil-
ity on high SNR spectra, which is consistent with the ASP-
CAP data processing standard pipeline. However, the pre-
diction error is larger in low signal-to-noise spectra. The
test reveals that the differences in the size of the training
set samples, the range of stellar parameters, and the train-
ing time can cause differences in the training results.
Aiming to solve the problem of noise interference dur-
ing stellar spectral feature extraction, Xiong et al.[®¥ pro-
posed the residual RNN RRNet, which is used primarily
for estimating stellar parameters from LAMOST medium-
resolution spectra. RRNet mainly consists of residual, recur-
rent, and uncertainty modules and suppresses the effects
of noise and irrelevant components by enhancing the spec-
tral features. The model performance improves with the
increase of hyperparameters, but when the hyperparame-
ters reach a certain threshold, the performance improve-
ment is weak or even decreases. Adding more residual
blocks can help improve the ability to extract spectral infor-
mation. However, the training set cannot be infinitely
scaled to support higher complexity models in practical
applications. Leung et al.[33] trained a stellar astronomical
model based on the Transformer and large-scale lan-
guage modeling techniques, as well as a stellar astronomi-
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Fig. 5. Architecture of 7-layer StarNet model based on CNNI68I,

Table 3. StarNetc2 model and Cannon2 model APOGEE
DR12 data test results!¢8!

Model Metric T./K log g/dex [Fe/H]/dex
StarNet, MAE 31.2 0.053 0.025
RMSE 51.2 0.081 0.040
Cannon2 MAE 46.8 0.066 0.036
RMSE 71.6 0.102 0.053

cal base model. Fig. 6 illustrates the model's architecture,
which performs generative and discriminative tasks, includ-
ing implementing stellar parameter extraction, spectral gen-
eration and restoration, and mapping between stellar param-
eters. The model was trained by a self-supervised learn-
ing approach using data such as APOGEE and Gaia. In
the task of mapping from spectra to stellar parameters,
the model's prediction accuracies for the T, log g, and
[M/H] parameters are 47 K, 0.11 dex, and 0.07 dex,
which illustrate comparable accuracies to that of the fine-
tuned XGBoost model. The model can handle multiple
tasks without fine-tuning and provide prediction inaccu-
racy, making it competitive with traditional machine learn-
ing models.

Traditional spectral classification methods usually
rely on researchers comparing spectra with standard stel-
lar samples by the naked eyel®], which, despite its pat-
tern recognition and classification capabilities, is inher-
ently subjective, and the process of visual inspection
through the human eye is highly time-consuming and diffi-
cult to handle large amounts of data. With the increasing
volume and complexity of astronomical data, traditional
spectral classification methods are becoming obsolete, and
the solution to these problems is the development of auto-
mated methods based on the quantitative determination of
spectral features. von Hippel et al.’] proposed a pattern
recognition-based approach to achieve spectral classifica-
tion by mimicking the operations of a human classifier
when visually inspecting spectra and estimating their pres-
ence. Scibelli et al.P7] achieved spectral recognition based
on searching for spectra that are most similar to the
observed spectra in a library of template spectra of differ-
ent spectral models, correlating the observed spectra with
the spectra in the template spectral library, and classify-
ing to which class of spectra they belong based on the mag-
nitude of their correlation coefficients. These automated
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Fig. 6. Neural network architecture of the transformer-based
stellar astronomical base model!35!,

techniques are an improvement over naked-eye classifica-
tion. However, they are difficult to apply to spectral data
of different resolutions generated by different observing
instruments and observing modes, and the pattern-match-
ing method suffers from low efficiency and few standard
star spectra.

With the deepening of machine learning research and
applications, more machine learning methods are used to
analyze and process astronomical spectral data. Liu et
al.’8] applied SVMs to the classification of stellar spec-
tra and found that the completeness of classification was
as high as 90% for A- and G-type stars, but for O-, B-,
and K-type stars, the completeness was as low as 50%,
resulting in about 40% of the O-, B-, and K-type stars
being respectively were misclassified as A- and G-type
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stars. Thus, traditional machine learning methods are
prone to large errors when facing multi-class classifica-
tion tasks, especially when the classes are unbalanced.
Zhang et al.®] establish a stellar spectral classification
model based on multi-class SVMs, which solves the prob-
lem of higher complexity of SVMs when targeting multi-
classification problems. However, model prediction accu-
racy is not high. Zhang et al.[l%% propose the XGBoost-
based stellar spectral feature classification method that
uses the XGBoost algorithm (for automatic classification
and feature ranking) to obtain the known or unknown spec-
tral lines most sensitive to the classification decision.
Traditional machine learning algorithms can extract sev-
eral layers of stellar spectral features, cannot extract high-
level features, and are susceptible to the imbalance of the
training set, and therefore DL methods have been gradu-
ally applied to the stellar spectral classification problem.
Zheng et al.ll%1 proposed a spectral generation method
based on a one-dimensional generative adversarial net-
work used to balance the training sample dataset, and
then a CNN was used for the classification task. The
model architecture is depicted in Fig. 7, and the model is
used for O-, B-, A-, F-, G-, K-, and M-type star classifica-
tion, and the average correct rate of classification is
95.3%. Liu et al.[192] proposed a supervised algorithm for
stellar spectral classification on the basis of one-dimen-
sional stellar spectral CNN to classify F-, G-, and K-type
stellar spectra and their subclasses and compared the

model with the Artificial Neural Network Algorithms, ran-
dom forest algorithms, and SVM algorithms. The one-
dimensional CNN model has the highest classification accu-
racy on the same dataset. Hong et al.[l03] used CNN to
extract the deep features of spectra and combine them
with the attention mechanism to learn the important spec-
tral features. It reduced the spectral dimensions by pool-
ing operations to compress the number of model parame-
ters. The method achieved an accuracy of 92.04% in the
classification of F-, G-, and K-type stellar spectra. Wang
et al.l81] developed a deep neural network-based auto-
matic astronomical spectral feature extraction method
applied to astronomical spectral classification and defec-
tive spectral repair. The method uses a pseudo-inverse learn-
ing algorithm to train a multilayer neural network layer
by layer to automatically extract features from spectral
data. It uses a softmax regression model for classification.
When the number of training samples is 608483, and the
number of networks in the model is increased to 12, the
model has F| scores of 0.8549, 0.7891, and 0.8499 for
the classification of F-, G-, and K-type stars. Sharma et
al.[1%] proposed to use a CNN model for the automatic clas-
sification of stellar spectra with the model architecture
depicted in Fig. 8, which uses an autoencoder for pre-train-
ing of unlabeled spectral data, adjusting the weights of
the encoding and decoding layers, and then supervised train-
ing based on the labeled data.
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Fig. 7. Combined CNN and SGAN architecture/101],

On the basis of the remarkable progress of CNNs in
astronomical spectral classification, researchers have pro-
posed several improved models to increase classification
accuracy and processing efficiency. Liu et al.ll%] pro-
posed a hybrid DL network BERT-CNN combining Trans-
former and CNN, which captures the intrinsic relation-
ship between spectral features through the self-attention
mechanism in Transformer, compresses the features
through the pooling layer in the CNN, and finally inte-
grates the features through the all-connectivity layer and
outputs the classification results through a softmax classi-
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fier. Han et al.[l9] proposed a stellar spectral classifica-
tion model MSFnet based on multiscale feature fusion,
using the multiscale fusion module to preprocess the data
and inputting the processed data into a four-layer CNN
model for the classification task, and successfully classi-
fied the stellar spectra into the six types of B-, A-, F-, G-,
K-, and M-type. Zou et al.['%] proposed a convolutional net-
work that combines the residual mechanism and attention
mechanism for astronomical spectral classification, using
convolutional operations to extract shallow and deep fea-
tures into the spectral data, the residual mechanism to
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increase the depth of the network, and the attention mecha-
nism to enable the network to focus on specific spectral
bands and features to make the learning process more tar-
geted. Liu et al.l’® proposed StellarGAN, a stellar spec-
tral classification model based on GANSs, and the training
process of the model is depicted in Fig. 9; in the pre-train-
ing stage, the model is trained using unlabeled stellar spec-
tra and spectra generated by generative networks, and the
fine-tuning phase is retrained using labeled spectra. The
StellarGAN model was trained with SVM, RF, PCA,
LLE, and CNN using the same number of training and
test sets, where the StellarGAN model obtained the high-
est F; score (0.63) on the SDSS dataset using only 1% of
the labeled data, compared with SVM, RF, CNN and
other traditional methods, StellarGAN has a clear advan-
tage in small sample learning. The experimental results
also reveal a direct relationship between the spectral sig-

Real spectra
dataset

Fake spectra
dataset

G-out

z Generator network

Fig. 9. Schematic of the StellarGAN model training process!8l.

nal-to-noise ratio and the F| score. When the signal-to-
noise ratio is low, the F'| score also decreases.

4. CONCLUSIONS

This paper systematically analyzes the application of
machine learning methods in stellar spectral atmospheric
parameter prediction and stellar spectral classification,
where Table 4 summarises the test results of the relevant
literature in the task of predicting stellar spectral atmo-
spheric parameters, and Table 5 shows the test results of
the relevant literature in the task of classifying stellar spec-
tral. In the stellar spectral atmospheric parameter predic-
tion task, CNN and Transformer models perform the best
in prediction. Although the CNN model performs well on
small-scale data, Transformer is more advantageous for
large-scale data. However, the performance of all the mod-

D(sigmoid)

Discriminator
network
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Table 4. Literature test results related to the application of ML in the prediction of stellar spectral atmospheric parameters

Model Training set ~ Test set Indicators T/K log g/dex [Fe/H]/dex [M/H]/dex
Zhang et al.[88] SVR 17175 8171443  Prediction error 49 0.10 — 0.037
. Artificial Neural
[90] _
Lietal. Networks(ANNSs) 168313 48090 MAE 49.28 0.084 0.041
Li et al.’ll CNNs 68363 7596 MAE 29 0.07 0.03 —
Pan et al.[5¢] FNNs 5000 45000 MAE 79.95 0.1706 0.1294 —
Fabbro et al.[68] CNNs 12681 85341 MAE 31.2 0.053 0.025 —
Xiong et al.[%4 RNNs 80812 23198 MAE 51.7068  0.0808 0.0308 —
Leung et al.[83] Transformer 397718 44080 Prediction error 47 0.11 — 0.07

Table 5. Literature test results related to the application of machine learning on the classification of stellar spectra

Model Spectral type  Training set  Testset  Accuracy Precision  Recall ~Harmonic mean F
F 840375 280125 0.8988 — — —
Zhang et al.[100] XGBoost G 1507318 502440 0.8537 — — —
K 357752 119251 0.9234 — — —
F 1000 400 0.958 — — —
Zhang et al.[100] gﬁi G 1000 400 0.960 — — —
K 1000 400 0.975 — — —
F 12994 2293 — — — 0.8468
Wang et al.8!] DNNs G 16448 2903 — — — 0.7747
K 13058 2304 — — — 0.8427
F 155 27 — 0.92 0.98 0.95
Sharma et al.[104] CNNs G 251 44 — 0.89 0.89 0.89
K 221 39 — 0.88 0.89 0.89
F 3585 1536 0.9108 0.9565 0.9708 0.9656
Livetal s} Transionmer G 1779 762 09239 09620  0.9659 0.9639
K 2269 972 0.9311 0.9696 0.9809 0.9752
F 5762 1921 0.951 0.961 0.952 0.956
Han et al.[106] CNNs G 5763 1922 0.957 0.96 0.953 0.956
K 5766 1922 0.975 0.957 0.975 0.966

els is degraded on low signal-to-noise spectral data, and
the computational cost and storage requirements increase
significantly with large-scale datasets. For stellar spectral
classification, CNNs far outperform traditional machine
learning methods. Generative multi-resistance network meth-
ods achieve better classification results by combining a
large amount of unlabeled data while relying on a small
amount of labeled data, and cross-modal models based on
the Transformer method can achieve the same level of clas-
sification ability as supervised learning models while
achieving multi-classification. Transformer-based cross-
modal models can realize multi-class tasks while achiev-
ing the same classification ability as supervised learning
models.

Artificial intelligence techniques still have limita-
tions when performing astronomical spectral analysis
tasks. In the classification problem, the uneven distribu-
tion of training sample data and low spectral signal-to-
noise ratio affect the model performance, and part of the
model performance relies on a large amount of high-qual-
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ity labeled data, which requires human resources and time
for noise reduction and labeling. This requirement is
because astronomical data processing involves a complex
physical background, the "black-box" characteristic of the
model makes it difficult to generate an explanation, the con-
sumption of computational resources is significant, and
model training and reasoning require a large amount of
computational resources.

Future advancements could focus on developing data
augmentation techniques to create high-quality simulated
datasets using generative adversarial networks. Addition-
ally, DL approaches that remove the need for manual fea-
ture extraction from raw data could be explored, along
with the adoption of semi-supervised or unsupervised learn-
ing methods. These approaches would enable the use of
novel structures within unlabeled data, expanding train-
ing datasets or creating standardized datasets.

Furthermore, the development of interpretable mod-
els capable of providing scientifically meaningful insights
should be prioritized. Establishing foundational models of



astronomical phenomena and training generalized models
using large-scale survey and multi-band astronomical
datasets could significantly reduce the time needed for itera-
tive model training and inference. With the development
of computer hardware and software technology and the
improvement of artificial intelligence algorithms, the combi-
nation of artificial intelligence and astronomy is an
inevitable trend in the development of astronomy. Artifi-
cial intelligence-related technology can provide astronomi-
cal data analysis with higher processing efficiency of spec-
tral line data, realize seamless docking and comprehen-
sive analysis of multi-source data, and provide richer, multi-
dimensional information support for the comprehensive rev-
elation of the mysteries of the universe.
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