• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Xception-AS:一种基于Xception算法结构的天体目标自动分类算法

Xception-AS: An Automatic Object Classification Algorithm Based on the Structure of Xception Model

  • 摘要: 提出了一种基于Xception结构的天体目标自动分类算法,该算法可以有效应用于星系、恒星和类星体的自动分类。算法以Xception为基础框架,通过选择最优激活函数,加入注意力机制等方式进行改进。随机选择SDSS-DR16测光图像数据中的11 543个星系、10 490个类星体和11 967个恒星共34 000个观测源g,r和i共3个波段的图像作为实验数据,并设计多组实验进行算法验证和测试,综合分析所有实验结果得出本文算法在准确率、精确率、召回率和F1分数等关键指标分别达到了90.26%, 90.01%, 89.86%和89.85%。相同数据集与其他13种经典和流行的卷积神经网络(Convolutional Neural Network, CNN)算法的实验结果对比表明,本文提出的Xception-AS算法具有更加优异的分类性能,证明本文算法解决天体目标自动分类问题的优越性。

     

    Abstract: In this paper, an algorithm based on Xception is proposed, which can be used to solve the problem of automatic classification of galaxies, stars and quasars. Based on Xception, the algorithm is improved by selecting the optimal activation function and adding attention mechanism. In this paper, 11 543 galaxies, 10 490 quasars and 11 967 stars in SDSS-DR16 photometric image data are randomly selected as experimental data from 34 000 observation sources in g, r and i bands, and multiple experiments are designed to verify and test the algorithm. A comprehensive analysis of all experimental results shows that the algorithm in this paper achieves 90.26%, 90.01%, 89.86% and 89.85% respectively in the key indicators such as precision rate, accuracy rate, recall rate and F1 score. Compared with other 12 classical and popular convolutional neural network algorithms on the same data set, the proposed Xception-AS algorithm has better classification performance, which proves that the proposed algorithm has advantages in solving the problem of automatic classification of celestial objects.

     

/

返回文章
返回