• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

RFI抑制技术在射电天文中的应用

Application of RFI Mitigation Technology in Radio Astronomy

  • 摘要: 针对射电天文观测过程中的射频干扰(Radio Frequency Interference, RFI)问题,详细分析了国内外台站射频干扰抑制策略。根据各天文台站实际观测过程中遇到的射频干扰问题,分别从主动预防阶段、预相关阶段、后相关阶段、机器学习和深度学习等方面研究了射频干扰的预防策略和抑制方法。详细分析了主动预防阶段可采取的方法,预相关阶段的自适应滤波和空间滤波方法,后相关阶段的VarThreshold, SumThreshold和奇异值分解等方法。探讨了基于机器学习的主成分分析、支持向量机、全卷积神经网络、卷积神经网络、U-Net等相关技术和方法在射频干扰信号处理方面的应用。

     

    Abstract: Aiming at the problem of Radio Frequency Interference (RFI) in the process of radio astronomy observation, the RFI mitigation strategies of domestic and foreign stations are analyzed in detail. According to the RFI problems encountered in the actual observation process of each observatory, the prevention strategies and mitigation methods of RFI are studied from the aspects of active prevention stage, pre-correlation stage, post-correlation stage, machine learning and deep learning. The methods that can be adopted in the active prevention stage, adaptive filtering in the pre-correlation stage, spatial filtering method, VarThreshold, SumThreshold and singular value decomposition in the post correlation stage are systematically analyzed. The applications of principal component analysis based on machine learning, support vector machine, full convolution neural network, convolution neural network, U-Net and other related technologies and methods in RFI signal processing are discussed.

     

/

返回文章
返回