• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

恒星大气参数测量

Survey of Stellar Atmosphere Parameter Estimation

  • 摘要: 从恒星的研究意义谈起,介绍了恒星大气参数的基本概念及研究意义;阐述了恒星参数测量方法的分类:直接测量和间接测量。着重评述了间接测量方法,包括测光方法、红外流量方法、巴尔默线轮廓拟合、谱线比例方法、线指数方法、金属线诊断法、光谱模板拟合和机器学习方法等。指出在大型巡天数据中光谱模板拟合与机器学习方法的优势及其广泛应用。对于高分辨率光谱,金属线诊断仍然备受天文学家青睐;红外流量方法的测量结果常用来定标。

     

    Abstract: Starting with the significance of the stellar research, the basic conception and importance of stellar atmosphere parameters are introduced. The two major classes of estimation approaches of stellar atmosphere parameters, the direct technique and the indirect technique, are discussed. This paper focuses on the indirect technique, which can be further divided into several methods:the photometric method, the infrared flux method, the Balmer profile method, the spectral line ratio method, the line index method, the metal line diagnostics method, the spectral template fitting method and the machine learning method. While the spectral template fitting method is widely used in current large spectroscopic survey projects, such as SDSS, RAVE and LAMOST, the machine learning method has shown its advantages in many specific situations. Among various machine learning methods and technologies, the most popular ones are principal component analysis (PCA), k-nearest neighbors (KNN), support vector machine (SVM), and all kinds of artificial neural network (ANN) methods. On the other hand, traditional astrophysical methods still play prominent roles. The metal line diagnostics method is still favored by astronomers when analyzing high resolution spectra. The experimental results from infrared flux method are generally used as calibration.

     

/

返回文章
返回