• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于LeNet-5卷积神经网络的太阳黑子检测方法

A Detection Method for Sunspots Based on Convolutional Neural Network LeNet-5

  • 摘要: 太阳黑子与耀斑的爆发存在紧密联系,因此及时准确地检测全日面图像中的太阳黑子可以为耀斑的预报提供依据。基于深度学习框架的LeNet-5卷积神经网络实现了一种太阳黑子自动检测方法,主要步骤包括:制作太阳黑子样本库、训练全卷积神经网络模型Sunspotsnet、检测和标记全日面像中的太阳黑子。实验结果表明,该方法可以识别SDO/HMI的全日面连续谱图像上各种类型的黑子,尤其是较弱的磁孔(0.88倍平均光球强度),采用基于深度学习的方法检测太阳黑子是可行的,训练的Sunspotsnet网络模型可以快速有效地应用在太阳黑子的检测上。

     

    Abstract: Sunspots are closely linked with flares eruption.Detecting the sunspots from full-disk continuous images timely and accurately could provide clues to predict flares. In this paper, we implement a new detecting method for sunspots from HMI full-disk continuous images, which is based on convolutional neural network LeNet-5 under the deep-learning framework. A sample library of sunspots is set up, and a full convolutional neural network named as Sunspotsnet is trained, and finally a detection method for sunspots from full-disk continuous images based on Sunspotsnet is proposed. The results show that this method can detect the different kinds of sunspots, especially faint pores (0.88 < I_QS>). It is feasible to detect the sunspots from full-disk continuous images based on deep-learning technology. This trained convolutional neural network Sunspotsnet can be deployed in detecting the sunspots quickly and effectively.

     

/

返回文章
返回