• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于卷积神经网络的全天空地基云图分类研究

Classification of All-sky Camera Data Based on Convolutional Neural Network

  • 摘要: 全天相机拍摄的全天空地基云图能够实时反映当地的云量信息,而云量是天文选址首先考虑的因素之一。因此,对全天空地基云图根据图像质量、应用背景等因素进行自动化分类,实现鲁棒性高、适应性强的自动化分类算法,为天文选址提供重要帮助。基于雪龙号全天相机数据对卷积神经网络模型进行训练,并使用丽江观测站全天相机数据进行测试,取得了较好的应用效果,实现了可迁移性高的全天空地基云图自动化分类方法。

     

    Abstract: The all-sky camera data is a common method for real-time cloud information monitoring, and cloud volume is one of the first considerations during astronomical site selection. Therefore, automatic classification of the all-sky foundation cloud image based on image quality, application background and other factors, and achieving an automatic classification algorithm with high robustness and adaptability, will provide important help for astronomical site selection. The paper uses the Xuelong all-sky camera data to train the convolutional neural network model, and uses the all-sky camera data of the Lijiang Observatory to test. It has achieved good application results and realized an automated classification method for all-sky camera data with high mobility.

     

/

返回文章
返回