• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于深度学习的太阳活动区检测与跟踪方法研究

A Detection and Tracking Method for Active Regions Based on Deep Learning

  • 摘要: 太阳活动区是各类太阳活动的主要能量来源,剧烈的太阳活动直接影响人类的生存环境,因此,准确地检测与跟踪太阳活动区对监控和预报空间天气非常重要。基于深度学习框架的YOLOv3-spp和DeepSort,提出了一种太阳活动区检测和跟踪方法(Active Regions Detection and Tracking Method,ARDTM),该方法较好地解决了传统图像处理方法易将一个太阳活动区误检测为多个,或者多个太阳活动区误检测为一个的问题;及时捕获新产生的太阳活动区和终止跟踪消失的太阳活动区,有效提高了太阳活动区的跟踪准确率。实验结果表明,该方法可以较好地检测和跟踪不同望远镜、不同时间间隔序列图像中的太阳活动区。

     

    Abstract: Active regions (ARs) are the primary source of energy for various solar activities. The violent solar activities adversely affect human living environment. Therefore, accurate detection and tracking of ARs are very important for monitoring and forecasting the space weather. In this paper, we propose an AR detection and tracking method (ARDTM) based on the deep learning model comprising of the YOLOv3-spp and DeepSort. The method solves the problem that one AR is mis-detected as multiple ARs, or multiple ARs are mis-detected as an AR. Besides, it captures new ARs and terminates disappeared ARs in time. The method improves the precision of detecting and tracking ARs. It can be used for detecting and tracking ARs in the solar full-disk longitudinal magnetograms observed from different telescopes, or images of different time interval series.

     

/

返回文章
返回