• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

一种星系形态分类的新方法

A New Method for Galaxy Morphology Classification

  • 摘要: 在天文学研究领域,星系的分类一直是一个热点和难点问题。近年来有学者将机器学习应用于星系形态的简单分类,但在分类过程中出现特征选择困难、特征遗漏、分类器选择困难等一系列问题。星系在视觉形态上可以分为椭圆星系、旋涡星系、透镜星系以及不规则星系。针对SDSS DR16,Galaxy Zoo2和EFIGI目录中星系的测光图像,提出了一种分类精度更高的星系形态分类(Galaxy Morphological Classification, GMC)方法。首先对图像进行剪裁、去噪,然后采用旋转、平移、缩放等方法进行数据增强,最后搭建了星系形态分类网络GMC-net对图像进行分类。从实验结果来看,旋涡星系、椭圆星系、透镜星系以及不规则星系分类精确率分别为98.29%,98.49%,99.18%和99.91%,召回率分别为98.44%,99.03%,98.89%和99.34%;对单独来自EFIGI目录中4种形态星系的分类准确率也达到了99.34%。实验结果表明,星系形态分类相较于其他分类方法表现更好,可以有效地用于星系的形态分类。

     

    Abstract: In the field of astronomy, the classification of galaxies has always been a hot and difficult problem. In recent years, some scholars have applied machine learning to the simple classification task of galaxy morphology, but in the process of classification, there are a series of problems, such as feature selection difficulty, feature omission, classifier selection difficulty and so on. Galaxies can be roughly divided into elliptical galaxies, spiral galaxies, lenticular galaxies and irregular galaxies in visual morphology. In this paper, GMC (Galaxy morphological classification) which is a more accurate classification method is proposed for the photometric images of galaxies in SDSS DR16, Galaxy Zoo2 and EFIGI catalog. Firstly, we cut and denoise the images, and use rotation, translation, scaling and other methods to enhance the data. Finally, we build the GMC-net to classify photometric images. According to the classification results, the classification accuracy of spiral galaxies, elliptical galaxies, lenticular galaxies and irregular galaxies in different databases are 98.29%, 98.49%, 99.18% and 99.91%, respectively; The average classification accuracy of four different galaxies from the same database EFIGI catalog is 99.34%. The experimental results show that GMC performs better than other classification methods, and can be used to classify galaxies more effectively.

     

/

返回文章
返回