Storing, processing, and transmitting state confidential information are strictly prohibited on this website
Liu Cheng, Chen Ying, Xiong Shuai, Shao Bo, Zhang Jian, Wang Wei. Research and Performance Assessment of BDSBAS Time System Interoperability[J]. Astronomical Research and Technology, 2022, 19(6): 576-587. DOI: 10.14005/j.cnki.issn1672-7673.20220517.001
Citation: Liu Cheng, Chen Ying, Xiong Shuai, Shao Bo, Zhang Jian, Wang Wei. Research and Performance Assessment of BDSBAS Time System Interoperability[J]. Astronomical Research and Technology, 2022, 19(6): 576-587. DOI: 10.14005/j.cnki.issn1672-7673.20220517.001

Research and Performance Assessment of BDSBAS Time System Interoperability

More Information
  • Received Date: January 23, 2022
  • Revised Date: March 19, 2022
  • Available Online: November 20, 2023
  • Since each SBAS is constructed by different countries, the augmented GNSS constellation and the reference time are not the same, the compatibility and interoperability between SBAS time systems has been one of the important issues in the SBAS standard research of the International Civil Aviation Organization (ICAO). The contribution introduces the concept and research status of the SBAS network time (SNT), combined with the formulation of ICAO SBAS Standards and Recommended Practices (SAPRs), analyzes and studies SNT compatibility and interoperability issues, and presents the latest joint solution. On this basis, the ground sub-system of the BeiDou Satellite-Based Augmentation System (BDSBAS) was upgraded, and preliminary service performance assessment was carried out. The results show that the maximum deviations between the BDSBAS single-frequency (SF) SNT and dual-frequency multi-constellation (DFMC) SNT and the reference GNSS time reference are 37 ns and 0.17 μs, respectively, which meet the ICAO standards. The service performance basically conforms to the APV-I level requirements, which proves the feasibility and reliability of the interoperability of BDSBAS SNT.
  • [1]
    JASON B. Wide Area Augmentation System (WAAS) update[R]. Changsha:International Civil Aviation Organization, 2016.
    [2]
    JASON B. Wide Area Augmentation System (WAAS) program overview[R]. Brisbane:International Civil Aviation Organization, 2019.
    [3]
    邵搏,耿永超,丁群,等.国际星基增强系统综述[J].现代导航, 2017, 6(3):157-161.

    SHAO B, GENG Y C, DING Q, et al. Summarize of international satellite based augmentation system[J]. Modern Navigation, 2017, 6(3):157-161.
    [4]
    European Satellite Services Provider (ESSP). EGNOS performance and LPV implementation status[R]. Changsha:International Civil Aviation Organization, 2016.
    [5]
    NATHALIE R. EGNOS programme status[R]. Changsha:International Civil Aviation Organization, 2016.
    [6]
    MASASHI G. MSAS status[R]. Changsha:International Civil Aviation Organization, 2016.
    [7]
    HIDETSUGU W. MSAS status and future plan[R]. Brisbane:International Civil Aviation Organization, 2019.
    [8]
    Airports Authority of India (AAI). GPS Aided GEO Augmented Navigation (GAGAN)[R]. Changsha:International Civil Aviation Organization, 2016.
    [9]
    Airports Authority of India (AAI). GPS Aided GEO Augmented Navigation (GAGAN)[R]. Senegal:International Civil Aviation Organization, 2016.
    [10]
    China Satellite Navigation Office (CSNO). System of differential correction and monitoring[EB/OL].(2014-02-11)[2022-01-24]. http://www.beidou.gov.cn/zy/kpyd/201710/t20171023_4777.html.
    [11]
    European Space Agency. System of differential correction and monitoring[EB/OL].(2021-08-01)[2022-01-24]. https://gssc.esa.int/navipedia/index.php/SDCM.
    [12]
    EUNSUNG L. Korea SBAS program[R]. Montréal:International Civil Aviation Organization, 2016.
    [13]
    Agency for Aerial Navigation Safety in Africa and Madagascar (ASECNA). SBAS for Africa and Indian Ocean initiative[R]. Ghana:International Civil Aviation Organization, 2019.
    [14]
    Agency for Aerial Navigation Safety in Africa and Madagascar (ASECNA). Update on "SBAS for Africa and Indian Ocean" (A-SBAS) development[R]. Montréal:International Civil Aviation Organization, 2020.
    [15]
    JEFFREY B, SIMON R. Southern positioning augmentation network program update[R]. Montréal:International Civil Aviation Organization, 2020.
    [16]
    中国卫星导航系统管理办公室.北斗卫星导航系统应用服务体系(1.0版)[S/OL].(2019-12-01)[2022-01-24]. http://www.beidou.gov.cn/xt/gfxz.

    China Satellite Navigation Office (CSNO). The application service architecture of BeiDou Navigation Satellite System (version 1.0)[S/OL].(2019-12-01)[2022-01-24]. http://www.beidou.gov.cn/xt/gfxz.
    [17]
    Civil Aviation Administration of China (CAAC)[R]. Montréal:International Civil Aviation Organization, 2017.
    [18]
    LIU C, GAO W G, SHAO B, et al. Development of BeiDou satellite-based augmentation system[J]. Navigation, 2021, 68(2):405-417.
    [19]
    陈谷仓,刘成,卢鋆.北斗星基增强系统服务等级与系统性能分析[J].测绘科学, 2021, 46(1):42-48.

    CHEN G C, LIU C, LU J. Service level and system performance analysis of BDSBAS[J]. Science of Surveying and Mapping, 2021, 46(1):42-48.
    [20]
    邵搏,丁群,耿永超,等.双频多星座星基增强系统电文综述[C]//第29届中国飞行器测控学术会议论文集.北京:清华大学出版社, 2018. SHAO B, DING Q, GENG Y C, et al. The Summarize of dual-frequency multi-constellation satellite-based augmentation system messages[C]//Proceeding of the 29th Conference of Spacecraft TT&C Technology in China. Beijing:Tsinghua University Press, 2018.
    [21]
    Satellite Based Augmentation System Interoperation Working Group (SBAS IWG). Satellite-based augmentation system dual-frequency multi-constellation definition document[R]. Senegal:International Civil Aviation Organization, 2016.
    [22]
    DFMC SBAS SARPS sub-working group rapporteur. Proposed amendments to Annex 10, Volume I:Satellite-based augmentation system (SBAS) provisions[R]. Montréal:International Civil Aviation Organization, 2020.
    [23]
    United States Naval Observatory (USNO). United States Naval Observatory[EB/OL].(2020-05-24)[2022-01-24]. https://www.usno.navy.mil/USNO.
    [24]
    刘成,李芳.卫星轨道误差对定位精度影响的摄动分析方法[J].天文研究与技术, 2018, 15(1):40-45.

    LIU C, LI F. Study on perturbation analysis method of the influence of satellite orbit error on positioning accuracy[J]. Astronomical Research&Technology, 2018, 15(1):40-45.
    [25]
    Leap Second. GPS, UTC, and TAI Clocks[EB/OL].(2021-06-20)[2022-01-24]. http://www.leapsecond.com/java/gpsclock.htm#:~:text=UTC%2C%20Coordinated%20Universal%20Time%2C%20popularly%20known%20as%20GMT,clocks%20in%20the%20GPS%20ground%20control%20stations%20and.
    [26]
    GPS Joint Program Office. NAVSTAR GPS Space Segment/Navigation User Interfaces[S]. Segundo:GPS Joint Program Office, 2021.
    [27]
    中国卫星导航系统管理办公室.北斗卫星导航系统空间信号接口空间信号接口控制文件公开服务信号B1C (1.0版)[S].北京:中国卫星导航系统管理办公室, 2017.

    China Satellite Navigation Office (CSNO). BeiDou Navigation Satellite System Signal In Space Interface Control Document Open Service Signal B1C (Version 1.0)[S]. Beijing:China Satellite Navigation Office, 2017.
    [28]
    高星伟,过静珺,程鹏飞,等.基于时空系统统一的北斗与GPS融合定位[J].测绘学报, 2012, 41(5):743-748, 755.

    GAO X W, GUO J J, CHENG P F, et al. Fusion positioning of Compass/GPS based on spatio temporal system unification[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5):743-748, 755.
    [29]
    ERIC C, NATALIA C. Update to Galileo Open Service Draft Sarps[R]. Montréal:International Civil Aviation Organization, 2020.
    [30]
    刘庆元,包海,王虎,等. GPS、GLONASS、GALILEO三大系统间时间系统以及坐标系统的转换[J].测绘科学, 2008, 33(5):13-15.

    LIU Q Y, BAO H, WANG H, et al. The transformation and coordinates transformation among GPS, GLONASS and GALILEO[J]. Science of Surveying and Mapping, 2008, 33(5):13-15.
    [31]
    International Civil Aviation Organization (ICAO). International Standards and Recommended Practices Annex10 Aeronautical Telecommunications Volume I Radio Navigation Aids[S]. Senegal:International Civil Aviation Organization, 2018.

Catalog

    Article views (66) PDF downloads (130) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return