Storing, processing, and transmitting state confidential information are strictly prohibited on this website
Liu, L., Bao, K. L., Feng, J. C., et al. 2024. Design and analysis of an advanced thermal management system for the solar close observations and proximity experiments spacecraft. Astronomical Techniques and Instruments, 1(1): 52−61. https://doi.org/10.61977/ati2024007.
Citation: Liu, L., Bao, K. L., Feng, J. C., et al. 2024. Design and analysis of an advanced thermal management system for the solar close observations and proximity experiments spacecraft. Astronomical Techniques and Instruments, 1(1): 52−61. https://doi.org/10.61977/ati2024007.

Design and analysis of an advanced thermal management system for the solar close observations and proximity experiments spacecraft

More Information
  • Corresponding author:

    Xiaofeng Zhang, zhangxf@microsate.com

  • Received Date: November 19, 2023
  • Accepted Date: December 06, 2023
  • Available Online: December 27, 2023
  • Published Date: December 19, 2023
  • In this paper, the mission and the thermal environment of the Solar Close Observations and Proximity Experiments (SCOPE) spacecraft are analyzed, and an advanced thermal management system (ATMS) is designed for it. The relationship and functions of the integrated database, the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon. For the complex thermal field regulation system and extreme space thermal environment, a modular simulation and thermal field planning method are proposed, and the feasibility of the planning algorithm is verified by numerical simulation. A solar array liquid cooling system is developed, and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion. The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.

  • This study is supported by National Key R&D Program of China (2022YFF0503800).

    Liu Liu conceived the idea, prepared data curation, provided investigation support, wrote original draft and edited the manuscript. Kangli Bao and Jianchao Feng prepared data curation, provided investigation support, used software for simulation analysis and wrote original draft. Xiaofei Zhu and Haoyu Wang provided investigation support, used software for simulation analysis and wrote original draft. Xiaofeng Zhang played the project administration and supervision role. Jun Lin supported the funding acquisition. All authors read and approved the final manuscript.

    Xiaofeng Zhang is editorial board member and Jun Lin is the executive editor-in-chief for Astronomical Techniques and Instruments, they were not involved in the editorial review or the decision to publish this article. The authors declare no competing interests.

  • [1]
    Lemen, J. R., Title, A. M., Akin, D. J., et al. 2012. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Physics, 275(1-2): 17−40. doi: 10.1007/s11207-011-9776-8
    [2]
    Pesnell, W. D., Thompson, B. J., Chamberlin, P. C. 2012. The solar dynamics observatory (SDO). Solar Physics, 275(1-2): 3−15. doi: 10.1007/s11207-011-9841-3
    [3]
    Bale, S. D, Badman, S. T., Bonnell, J. W., et al. 2019. Highly structured slow solar wind emerging from an equatorial coronal hole. Nature, 576: 237−242. doi: https://doi.org/10.1038/s41586-019-1818-7
    [4]
    Müller, D., Cyr, O. C. St., Zouganelis, I., et al . 2020. The solar orbiter mission. Astronomy & Astrophysics, 642: A1. doi: https://doi.org/10.1051/0004-6361/202038467
    [5]
    Gan, W. Q., Zhu, C., Deng, Y. Y., et al. 2019. Advanced space-based solar observatory (ASO-S): an overview. Research in Astronomy and Astrophysics, 19(11): 5−12. doi: 10.1088/1674-4527/19/11/156
    [6]
    Li, H., Che, B., Feng, L., et al. 2019. The Lyman-alpha solar telescope (LST) for the ASO-S mission — I scientific objectives and overview. Research in Astronomy and Astrophysics, 19(11): 25−34. doi: 10.1088/1674-4527/19/11/158
    [7]
    Deng, Y. Y., Zhang, H. Y., Yang, J. F., et al. 2019. Design of the full-disk magnetoGraph (FMG) onboard the ASO-S. Research in Astronomy and Astrophysics, 19(11): 11−22. doi: 10.1088/1674-4527/19/11/157
    [8]
    Li, C., Fang, C., Li, Z., et al. 2022. The Chinese Hα Solar Explorer (CHASE) mission: an overview. SCIENCE CHINA Physics, Mechanics & Astronomy, 65(8): 2−9. doi: 10.1007/s11433-022-1893-3
    [9]
    Lin, J., Wang, M., Tian, H., et al. 2019. In situ measurements of the solar eruption. SCIENTIA SINICA Physica, Mechanica & Astronomica, 49(5): 70−89. (in Chinese) doi: https://doi.org/10.1360/SSPMA2018-00308
    [10]
    Lin, J., Huang, S. J., Li, Y.,et al. 2021. In situ detection of the solar eruption: lay a finger on the Sun. Chinese Journal of Space Science, 41(2): 183−210. (in Chinese) doi: 10.11728/cjss2021.02.183
    [11]
    Lin, J. 2019. Lin-Forbes model of solar eruptions and turbulent properties of large-scale magnetic reconnection. http://www.pmo.cas.cn/cxwh/colloquium/202112/t20211203_6287097.html.
    [12]
    Yao, Z. H., Sun, T. R. 2022. Origin of Jupiter's soft X-ray aurora and a brief perspective on future explorations. Reviews of Geophysics and Planetary Physics, 53(2): 236−237. (in Chinese) doi: 10.19975/j.dqyxx.2021-066
    [13]
    Yang, J., Li, Y. Z., Wang, J. 2008. Research and simulation on thermal control technology of Nanosatellite micro-shutters. Strategic Study of CAE, 10(7): 169−172. (in Chinese)
    [14]
    Liu, J., Li, Y. Z., Zhang, J. X. , et al. 2009. Research on MEMS autonomous thermal control system of spacecraft based on intelligent Agent. Spacecraft Environment Engineering, 26(6): 574−579. (in Chinese) doi: 10.12126/see.2009.06.016
    [15]
    Guo, J., Chen, Y., Shao, X. G. 2012. Intelligent control technology for spacecraft thermal autonomous management. Spacecraft Engineering, 21(06): 49−53. (in Chinese) doi: 10.3969/j.issn.1673-8748.2012.06.007
    [16]
    Petkovic, M. , Boumghar, R., Breskvar, M., et al. 2019. Machine learning for predicting thermal power consumption of the Mars express spacecraft. IEEE Aerospace and Electronic Systems Magazine, 34(7): 46−60. doi: 10.1109/MAES.2019.2915456
    [17]
    Feng, J., Zhang, X., Liao, X., et al. 2021. Spacecraft intelligent autonomous thermal control method based on space environment prediction. Spacecraft Engineering, 30(5): 45−52. (in Chinese) doi: 10.3969/j.issn.1673-8748.2021.05.007
    [18]
    Ning, X. W., Xu, K., Wang, Y. Y., et al. 2022. Design and implementation of Chang’e-5 complex of lander and ascent vehicle lightweight pumped fluid loop thermal bus. Acta Aeronautica et Astronautica Sinica, 43(12): 164−173. (in Chinese) doi: 10.7527/S1000-6893.2021.26292
    [19]
    Xiang, Y. C., Liu, Z. J., Ning, X. W., et al. 2022. Review of thermal control technology in Chinese lunar probes. Spacecraft Engineering, 31(2): 29−34. (in Chinese) doi: 10.3969/j.issn.1673-8748.2022.02.004
    [20]
    Wang, Y. Y., Ning, X. W., Miao, J. Y., et al. 2021. Work performance analysis on the Chang'e-5 lunar lander water sublimation heat dissipation system. Scientia Sinica(Technologica), 51(12): 1445−1452. doi: https://doi.org/10.1360/SST-2021-0105
    [21]
    Chen, Z. F., Xu, Y. D., Guo, T., et al. 2013. Internal active thermal control system of international space station. Aerospace Shanghai, 30(3): 27−32. (in Chinese) doi: 10.19328/j.cnki.1006-1630.2013.03.007
    [22]
    Patel, V. P., Winton, D., Ibarra, T. H. 2004. A selected operational history of the internal thermal control system (ITCS) for international space station (ISS). SAE Technical Paper, 2004-01-2470. doi: https://doi.org/10.4271/2004-01-2470
    [23]
    Ning, X. W., Li, J. D., Wang, Y. Y., et al. 2019. Review on construction of new spacecraft thermal control system in China. Acta Aeronautica et Astronautica Sinica, 40(7): 6−18. (in Chinese) doi: 10.7527/s10006-893.2019.22874
    [24]
    Fu, S. M., Xu, X. P., Pei, Y. F. 2010. Modeling and analysis of space station integrated global thermal mathematical models. Spacecraft Environment Engineering, 27(1): 75−79. (in Chinese) doi: 10.3969/j.issn.1673-1379.2010.01.015
    [25]
    Cao, J. G., Gu, Y. P., Chen, G., et al. 2017. The flight experiments of active thermal control system with micro-mechanical pumped fluid loop. Spacecraft Environment Engineering, 34(4): 343−349. (in Chinese) doi: 10.3969/j.issn.1673-1379.2017.04.001
    [26]
    Lockwood, M. K. , Ercol, C. J., Cho, W. , et al. 2010. An active cooling system for the solar probe power system. In Proceedings of 40th International Conference on Environmental Systems.
    [27]
    Ercol, C. J., Abel, E. D., Allan, H. G., et al. 2018. Thermal design verification testing of the solar array cooling system for parker solar probe. In Proceedings of 48th International Conference on Environmental Systems.
    [28]
    Congdon, E. A. 2021. Multi-scale thermal and structural characterization of carbon foam for the parker solar probe thermal protect system. Doctor thesis, Johns Hopkins University.
  • Articles Related

    [1]Jun Lin, Jing Feng, Zhenhua Ge, Jiang Tian, Yuhao Chen, Xin Cheng, Hui Tian, Jiansen He, Alexei Pevtsov, Haisheng Ji, Shangbin Yang, Parida Hashim, Bin Zhou, Yiteng Zhang, Shenyi Zhang, Xi Lu, Yuan Yuan, Liu Liu, Haoyu Wang, Hu Jiang, Lei Deng, Xingjian Shi, Lin Ma, Jingxing Wang, Shanjie Huang, Xiaoshi Zhang, Hao Yang, Zhonghua Yao, He Zhang, Yuanming Miao, Lei Ni, Zhixing Mei, Jing Ye, Yan Li. The Solar Close Observations and Proximity Experiments (SCOPE) mission [J]. Astronomical Techniques and Instruments. DOI: 10.61977/ati2024055
    [2]Kangli Bao, Xiaofei Zhu, Jianchao Feng, Liu Liu, Xiaofeng Zhang, Zhiming Cai, Jun Lin, Yonghe Zhang. Application and prospect of the fluid cooling system of solar arrays for probing the Sun [J]. Astronomical Techniques and Instruments, 2024, 1(1): 62-70. DOI: 10.61977/ati2024003
    [3]Huang Shanjie, Zhong Xiaoyu, Lin Jun, Jin Zhenyu, Xu Fangyu. Study on Design Scheme of Thermal Protection of Probe for in situ Measurements of Solar Eruption [J]. Astronomical Research and Technology, 2021, 18(1): 87-100. DOI: 10.14005/j.cnki.issn1672-7673.20200515.001
    [4]Huang Shanjie, Lin Jun, Jin Zhenyu, Song Tengfei, Xu Fangyu. Research and Enlightenment of Heat Protection System of Parker Solar Probe [J]. Astronomical Research and Technology, 2020, 17(4): 538-547.
    [5]Wu Junlin, Jin Chengjin, Zhu Yan, Yue Youling, Gan Hengqian, Zhao Xin. Design and Implementation of a Digital Backend Incorporating a Zoom-PFB Algorithm Based on a ROACH System [J]. Astronomical Research and Technology, 2015, 12(4): 473-479.
    [6]ZHAO Lian-yuan, XU Jun. The Thermal and Heat Leak Analyses of Dewar [J]. Astronomical Research and Technology, 2008, 5(3): 319-322.
    [7]GU Bo-zhong, ZUO Heng. The Thermal Analysis of the Primary Mirror of 1m Infrared Solar Telescope at Yunnan Observatory [J]. Astronomical Research and Technology, 2008, 5(1): 83-90.
    [8]Li Rufeng, Bi Shaolan, Dun Jinping. Observation and Research on the Twisting Characteristics of Flare Loop System [J]. Publications of the Yunnan Observatory, 1999, 0(S1): 437-440.
    [9]Gu Xiaoma, Dun Jinping, Zhong Shuhua. A Computation on Velocity Field of the Post-flare Loop System of August 17, 1989 [J]. Publications of the Yunnan Observatory, 1999, 0(S1): 413-417.
    [10]Zhang Bin, Li Wei, Song Guofeng, Jin Shengzhen. Presentation on the Electronic Control System of Space Solar Telescope [J]. Publications of the Yunnan Observatory, 1999, 0(S1): 130-133.

Catalog

    Figures(11)  /  Tables(1)

    Article views (486) PDF downloads (35) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return