Storing, processing, and transmitting state confidential information are strictly prohibited on this website
Ding Yuanyuan, Tang Zhenghong, Wang Yan. The Progress in Speckle-Imaging Experiment with the 1.56m Telescope of the Shanghai Astronomical Observatory[J]. Astronomical Research and Technology, 2012, 9(3): 308-315.
Citation: Ding Yuanyuan, Tang Zhenghong, Wang Yan. The Progress in Speckle-Imaging Experiment with the 1.56m Telescope of the Shanghai Astronomical Observatory[J]. Astronomical Research and Technology, 2012, 9(3): 308-315.

The Progress in Speckle-Imaging Experiment with the 1.56m Telescope of the Shanghai Astronomical Observatory

More Information
  • Received Date: June 23, 2011
  • Revised Date: August 15, 2011
  • Published Date: July 14, 2012
  • The speckle-imaging technique is one of effective methods that can largely compensate atmospheric turbulence effects to improve the resolution of a ground-based telescope. The technique utilizes a speckle camera to obtain a series of short-exposure images where the turbulence effects are almost instantaneous, and then reconstruct a high-resolution image by image processing. For its convenient implementation, this technique has been widely used in observational astronomy, especially for observing binary stars. This paper first briefly reviews the development of astronomical high-resolution image reconstruction techniques, by describing research achievements, some typical methods, and the disadvantages of these methods. The paper subsequently describes the type of noise in speckle images and filtering methods. We experiment the technique by observing binary stars with the 1.56m telescope. The object magnitudes are between 4 and 7, and the magnitude differences in the binary systems are less than 2. The high-resolution images of binary stars are reconstructed successfully with the speckle interferometry and the Iterative Shift-and-Add method. It is shown that the speckle-imaging experiment on the 1.56m telescope has reached the diffraction-limit resolution of the telescope.
  • [1]
    A Labeyrie. Attainment of diffraction limited resolution in large telescope by fourier analysing speckle patterns in star images[J]. Astronomy and Astrophysics,1970, 6(1):85-87.
    [2]
    Lohmann A W, Weigelt G P, Wirnitzer B. Speckle masking in astronomy triple correlation theory and application[J]. Applied Optics, 1983, 22(24):4028-4037.
    [3]
    V G Orlov, V V Voitsekhovich, J L Rivera, et al. Speckle interferometry at the observatirio astronómico nacional. Ⅱ[J]. Revista Mexicana de Astronomíay Astrofísica, 2010, 46(2):245-251.
    [4]
    Elliott P Horch, Sarah E Robinson. Speckle observations of binary stars with the WIYN telescope. Ⅱ. relative astrometry measures during 1998-2000[J]. The Astronomical Journal, 2002, 123(6):3442-3459.
    [5]
    T W Beletic, D M Goodman, E M Johansson, et al. Speckle imaging of satellites at the U. S. air force maui optical station[J]. Applied Optics, 1992, 31(29):6307-6321.
    [6]
    Taylor W Lawrence, J Patrick Fitch, Dennis M Goodman, et al. Extended-image reconstruction through horizontal path turbulence using bispectral spectral speckle interferometry[J]. Optical Engineering, 1992, 31(3):627-636.
    [7]
    R H T Bates, A M Sinton, R A Minard. Generalization of shift-and-add imaging[J]. International Conference on Speckle, 1985, 556:263-269.
    [8]
    邱耀辉, 刘忠, 卢汝为, 等. 天文图像空域重建新方法:迭代位移叠加法[J]. 光学学报, 2001, 21(2):186-191. Qiu Yaohui, Liu Zhong, Lu Ruwei, et al. A new method for astronomical image reconstruction in spatial region:iterative shift-and-add technique[J]. Acta Optica Sinica, 2001, 21(2):186-191.
    [9]
    K H Hofmann, G Weigelt. Iterative image reconstruction from the bispectrum[J]. Astronomy and Astrophysics, 1993, 278(1):328-339.
    [10]
    邱耀辉, 刘忠, 卢汝为, 等. 天文像复原迭代位移叠加法中初始信息的选择[J]. 云南天文台台刊, 2002(4):29-36. Qiu Yaohui, Liu Zhong, Lu Ruwei, et al. The selection of initial information in iternative shift-and-add technique for astronomical image reconstruction[J]. Publications of Yunnan Observatory, 2002(4):29-36.
    [11]
    刘忠, 邱耀辉, 楼柯, 等. 天文斑点成像中的数据预处理[J]. 云南天文台台刊, 1997(4):42-47. Liu Zhong, Qiu Yaohui, Lou Ke, et al. Data pre-processing in astronomical special imaging[J]. Publications of Yunnan Observatory, 1997(4):42-47.
    [12]
    邱耀辉, 刘忠, 卢汝为, 等. 天文斑点成像中的傅里叶模复原和像复原实验[J]. 光学学报, 2000, 20(4):501-508. Qiu Yao Hui, Liu Zhong, Lu Ruwei, et al. Fourier modules recovery in astronomical speckle imaging and the experiments of image reconstruction[J]. Acta Optica Sinica, 2000, 20(4):501-508.
    [13]
    金振宇, 刘忠, 邱耀辉. 对迭代位移叠加像复原方法的改进[J]. 光学学报, 2009, 29(5):1205-1210. Jin Zhenyu, Liu Zhong, Qiu Yaohui. Improvement of iterative shift-and-add image reconstruction method[J]. Acta Optica Sinica, 2009, 29(5):1205-1210.
    [14]
    沈忙作, 王伟建. 星体斑点干涉术的实验模拟[J]. 天文学报, 1984, 25(3):293-299. Shen Mangzuo, Wang Weijian. Laboratory simulation of stellar speckle interferometry[J]. Acta Astronomica Sinica. 1984, 25(3):293-299.
    [15]
    杨连臣, 沈忙作. 扩展目标高分辨力斑点成像的模拟[J]. 光电工程, 2001, 27(4):7-10. Yang Lianchen, Shen Mangzuo. Simulation for high-resolution speckle imaging of extended objects[J]. Opto-Electronic Engineering, 2001, 27(4):7-10.
    [16]
    李强, 沈忙作. 基于相位差方法的天文目标高分辨率成像研究[J]. 天文学报, 2007, 48(1):113-120. Li Qiang, Shen Mangzuo. The study of high-resolution imaging of astronomical object based on phase-diversity method[J]. Acta Astronomical Sinica, 2007, 48(1):113-120.

Catalog

    Article views (192) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return