Storing, processing, and transmitting state confidential information are strictly prohibited on this website
Wang Xiaoyan, LiuJianjun, Zhang Wuming, Ren Xin, Wang Wenrui. A Review of Planet Rovers' Terrain Reconstruction[J]. Astronomical Research and Technology, 2016, 13(4): 464-472.
Citation: Wang Xiaoyan, LiuJianjun, Zhang Wuming, Ren Xin, Wang Wenrui. A Review of Planet Rovers' Terrain Reconstruction[J]. Astronomical Research and Technology, 2016, 13(4): 464-472.

A Review of Planet Rovers' Terrain Reconstruction

More Information
  • Received Date: December 07, 2015
  • Revised Date: January 10, 2016
  • Available Online: November 20, 2023
  • Several planet rovers have successfully done the exploration on the surface of the Moon and the Mars. High resolution and precision terrain data of a planet's surface is vitally important to the navigation system of the rovers, even for the whole exploration missions. This paper reviews the rovers sent to the universe in the past, including three Moon rovers (‘Lunokhod 1’, ‘Lunokhod 2’, ‘Yutu’) and four Mars rovers (‘Sojourner’, ‘Spirit’, ‘Opportunity’, ‘Curiosity’), and their terrain reconstruction methods. This paper also reviews the technology of stereo vision and its application in the study of terrain reconstruction. It also compares the characteristics of two methods of stereo match. In the end, this paper analyzes the problems of present studies in this field, providing some references and advice for future lunar or mars exploration.
  • [1]
    邢丽平, 左维, 李春来. 建立WebGIS的月球三维可视化关键技术[J]. 天文研究与技术,国家天文台台刊, 2014, 11(3):299-304.

    Xing Liping, Zuo Wei, Li Chunlai. Key technology of a WebGIS-based 3D visualization system for the Moon[J]. Astronomical Research & Technology,Publications of National Astronomical Observatories of China, 2014, 11(3):299-304.
    [2]
    肖媛, 张志强, 吕昌, 等. 嫦娥二号任务地面应用系统实时业务仿真关键技术研究[J]. 天文研究与技术,国家天文台台刊, 2011, 8(1):8-14.

    Xiao Yuan, Zhang Zhiqiang, Lv Chang, et al. Research on key technologies in simulating real-time operation of the ground segment of the Chang'E-2 mission[J]. Astronomical Research & Technology,Publications of National Astronomical Observatories of China, 2011, 8(1):8-14.
    [3]
    Harvey B. Samplers, rovers and orbiters[M]//Soviet and Russian Lunar Exploration. Chichester:Parxis Publishing Ltd, 2007:239-286.
    [4]
    Wang Wenrui, Ren Xin, Wang Fenfei, et al. Terrain reconstruction from Chang'e-3 PCAM images[J]. Research in Astronomy and Astrophysics, 2015, 15(7):1057-1067.
    [5]
    Matthies L, Maimone M, Johnson A, et al. Computer vision on Mars[J]. International Journal of Computer Vision, 2007, 75(1):67-92.
    [6]
    Matthies L, Balch T, Wilcox B. Fast optical hazard detection for planetary rovers using multiple spot laser triangulation[C]//IEEE International Conference on Robotics and Automation. 1997:859-66.
    [7]
    Matthies L, Shafer S A. Error modeling in stereo navigation[M]//Autonomous Robot Vehicles. New York:Springer New York Incorporated, 1990:135-144.
    [8]
    Goldberg S B, Maimone M W, Matthies L. Stereo vision and rover navigation software for planetary exploration[C]//IEEE Aerospace Conference Proceedings. 2002.
    [9]
    Maki J N, Litwin T, Schwochert M, et al. Operation and performance of the Mars Exploration Rover imaging system on the Martian surface[C]//IEEE International Conference on Systems, Man and Cybernetics. 2005.
    [10]
    Maki J N, Bell J F, Herkenhoff K E, et al. Mars Exploration Rover engineering cameras[C]//Proceedings of SPIE. 2001.
    [11]
    Vergauwen M, Pollefeys M, Van Gool L. A stereo vision system for support of planetary surface exploration[C]//Computer Vision Systems. Berlin:Springer Berlin Heidelberg, 2001:298-312.
    [12]
    Zhang Zhengyou. A stereovision system for a planetary rover:calibration, correlation, registration, and fusion[J]. Machine Vision and Applications, 1997, 10(1):27-34.
    [13]
    Perri S, Colonna D, Zicari P, et al. SAD-based stereo matching circuit for FPGAs[C]//13th IEEE International Conference on Electronics, Circuits and Systems. 2006.
    [14]
    Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4):650-656.
    [15]
    Peng M, Kaichang D I, Liu Z Q. Adaptive Markov random field model for dense matching of deep space stereo images[J]. Journal of Remote Sensing, 2014, 18(1):77-89.
    [16]
    曹凤萍, 王荣本. 月球车视觉系统立体匹配算法[J]. 吉林大学学报:工学版, 2011, 41(1):24-28.

    Cao Fengping, Wang Rongben. Stereo matching algorithm for lunar rover vision system[J]. Journal of Jilin University:Engineering and Technology Edition, 2011, 41(1):24-28.
    [17]
    Geiger D, Yuille A. A common framework for image segmentation[J]. International Journal of Computer Vision, 1990, 6(3):227-243.
    [18]
    Kaichang D A, Fengliang X A, Jue W A, et al. Mars Exploration Rover mission[J]. Journal of Geophysical Research, 2014, 108(E12):429-432.
  • Articles Related

    [1]Jiannan Sun, Zhe Kang, Zhenwei Li, Cunbo Fan. Data matching and association based on the arc-segment difference method [J]. Astronomical Techniques and Instruments. DOI: 10.61977/ati2025029
    [2]Yanning Zheng, Xue Dong, Zhipeng Liang, Jian Gao, Bowen Guan, Liyan Sun, Xingwei Han, He Dong. Research on the accurate calculation method of crater position in Lunar surface images based on feature matching [J]. Astronomical Techniques and Instruments. DOI: 10.61977/ati2025026
    [3]Pan Zuheng, Fang Xueqing, Guo Bifeng, Lu Xing, Peng Qingyu. A Fast Catalogue Matching Algorithm for Large Field of View [J]. Astronomical Techniques and Instruments, 2023, 20(6): 549-555. DOI: 10.14005/j.cnki.issn1672-7673.20230913.002
    [4]He Feilong, Xu Qian, Wang Na, Li Lin, Huang Shiyi. Research on Wind Flow Regulation Influenced by the Mountain Terrain at Large Aperture and High Precision Radio Telescope Site Based on Numerical Simulation [J]. Astronomical Techniques and Instruments, 2023, 20(4): 296-309. DOI: 10.14005/j.cnki.issn1672-7673.20230318.001
    [5]Zhou Jia, Wu Fengquan, Sun Shijie, Suo Nanben, Zhang Jiao, Chen Xuelei. An Application of Non-Foster Matching Circuit in Improving Lunar Low-frequency Membrane Antenna [J]. Astronomical Techniques and Instruments, 2023, 20(3): 211-218. DOI: 10.14005/j.cnki.issn1672-7673.20230314.004
    [6]Yang Pan, Zeng Shuguang, Liu Suo, Zheng Sheng, Lin Ganghua, He Huiling. Registration and Location Method of Solar Magnetic Field Images Based on Scale-invariant Feature Point Matching [J]. Astronomical Research and Technology, 2018, 15(1): 59-68.
    [7]Gao Xingye, Liu Jianjun, Ren Xin, Mu Lingli, Li Chunlai. Application of Binocular Stereo Display Technology in Three-Dimensional Visualization of the Moon [J]. Astronomical Research and Technology, 2016, 13(3): 358-365.
    [8]Wang Fenfei, Ren Xin, Liu Jianjun, Li Chunlai. Image Quality Evaluation of the CCD Stereo Camera of Chang'E-2 Lunar Satellite [J]. Astronomical Research and Technology, 2016, 13(1): 93-99.
    [9]REN Jun-jie, PENG Qing-yu. Comparison of Two Fast Object Matching Algorithms [J]. Astronomical Research and Technology, 2010, 7(2): 115-123.
    [10]WANG Jue, LI Chun-lai, ZHAO Bao-chang. The Laboratory Radiometric Calibration of the CCD Stereo Camera for the Optical Payload of the Lunar Explorer Project [J]. Astronomical Research and Technology, 2007, 4(1): 30-35.

Catalog

    Article views (768) PDF downloads (679) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return