Storing, processing, and transmitting state confidential information are strictly prohibited on this website
Li Weijiang, Qi Xin, Wang Feng. A Square Grid Structure for Target Detection of Solar Activities[J]. Astronomical Research and Technology, 2016, 13(4): 481-488.
Citation: Li Weijiang, Qi Xin, Wang Feng. A Square Grid Structure for Target Detection of Solar Activities[J]. Astronomical Research and Technology, 2016, 13(4): 481-488.

A Square Grid Structure for Target Detection of Solar Activities

More Information
  • Received Date: November 22, 2015
  • Revised Date: December 30, 2015
  • Available Online: November 20, 2023
  • Astronomical image background is complicated and contains a lot of noise. To identify and segment astronomical activities effectively and automatically from an astronomical image is difficult and a research hot-spot. This paper proposes a target detection method for solar activity based on the structure of square grid (GBTD). For this method, the solar image is divided into a square grid structure with the same size. Based on multiply-thresholds selection strategy and GBTD strategy, it segments the target area and background area. The experimental results show that this method delivers satisfactory performance in accuracy and time-cost; it also produces an obvious anti-jamming performance for image noise. GBTD method provides a general image segmentation method for investigations of various types of solar images; it also provides a feasible method for solving the problem of mass astronomical data storage.
  • [1]
    崔辰州, 李文, 于策, 等. FITS数据文件的检索和访问[J]. 天文研究与技术,国家天文台台刊, 2008, 5(2):116-123.

    Gui Chenzhou, Li Wen, Yu Ce, et al. Search and location of FITS data files[J]. Astronomical Research & Technology,Publications of National Astronomical Observatories of China, 2008, 5(2):116-123.
    [2]
    Banda J M, Angryk R A. Selection of image parameters as the first step towards creating a CBIR system for the Solar Dynamics Observatory[C]//DICTA'10 Proceedings of the 2010 International Conference on Digital Image Computing:Techniques and Applications. 2010:528-534.
    [3]
    Banda J M, Liu C, Angryk R A. Region-based querying of solar data using descriptor signatures[C]//IEEE International Conference on Data Mining Workshops. 2013:1-7.
    [4]
    Burger H C, Sch lkopf B, Harmeling S. Removing noise from astronomical images using a pixel-specific noise model[C]//2011 IEEE International Conference on Computational Photography (ICCP). 2011:1-8.
    [5]
    Yokoya N, Levine M D. Range image segmentation based on differential geometry:a hybrid approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 11(6):643-649.
    [6]
    James McAteer R. T, Gallagher P T, Ireland J, et al. Automated boundary-extraction and region-growing techniques applied to solar magnetograms[J]. Solar Physics, 2005, 228(1):55-66.
    [7]
    Benkhalil A, Zharkova V V, Zharkov S, et al. Active region detection and verification with the solar feature catalogue[J]. Solar Physics, 2006, 235(1):87-106.
    [8]
    Gao Jianlin, Zhou Mengchu, Wang Haimin. A threshold and region growing combined method for filament disappearance area detection in solar images[C]//Conference on Information Sciences and Systems. 2001.
    [9]
    Parnell C E, DeForest C E, Hagenaar H J, et al. A power-law distribution of solar magnetic fields over more than five decades in flux[J]. The Astrophysical Journal, 2009, 698:75-82.
    [10]
    Vincent L, Soille P. Watersheds in digital spaces:an efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6):583-598.
    [11]
    Feng Song, Xu Zhi, Deng Linhua, et al. Automatic segmentation of granules of the solar photosphere using morphological reconstruction and watershed transform[C]//6th International Conference on Intelligent Networks and Intelligent Systems (ICINIS). 2013:300-303.
    [12]
    Bovelet B, Wiehr E. A new algorithm for pattern recognition and its application to granulation and limb faculae[J]. Solar Physics, 2011, 201(1):13-26.
    [13]
    Xie Z X, Yu D R, Zhang J, et al. Properties of magnetic elements in the quiet Sun using the marker-controlled watershed method[J]. Astronomy and Astrophysics, 2009, 505(2):801-810.
    [14]
    Yuan Y, Shih F Y, Jing J, et al. Automatic solar filament segmentation and characterization[J]. Solar Physics, 2011, 272:101-117.
    [15]
    Gao J L, Wang H M, Zhou M C. Development of an automatic filament disappearance detection system[J]. Solar Physics, 2002, 205(1):93-103.
    [16]
    Shih F Y, Kowalski A J. Automatic extraction of filaments in Hα solar images[J]. Solar Physics, 2003, 218(1):99-122.
    [17]
    Ben-Sasson E, Galesi N. Space complexity of random formula in resolution[C]//IEEE Conference on Computational Complexity. 2001:42-51.
    [18]
    卢蓉, 范勇, 陈念年, 等. 一种提取目标图像最小外接矩形的快速算法[J]. 计算机工程, 2010, 36(21):178-180.

    Lu Rong, Fan Yong, Chen Niannian, et al. Fast algorithm for extracting minimum enclosing rectangle of target image[J]. Computer Engineering, 2010, 36(21):178-180.
    [19]
    谢维信, 秦桉. 人的视觉对灰度级别的分辨能力及视觉内部噪声的研究[J]. 航天医学与医学工程, 1991, 4(1):51-55.

    Xie Weixin, Qin An. The gray level resolution and intrinsic noise of human vision[J]. Space Medicine & Medical Engineering, 1991, 4(1):51-55.
  • Articles Related

    [1]Shao Guangsheng, Liu Zhijie, Yu Qiuyu, You Shanping. Research on Denoising Method of Pulsar Signal Based on Wavelet Packet Threshold Method [J]. Astronomical Research and Technology, 2021, 18(4): 523-532. DOI: 10.14005/j.cnki.issn1672-7673.20210129.002
    [2]Wang Chaoyan, Chen Xinyang, Zheng Lixin, Li Kexin, Cai Jianqing, Ding Yuanyuan. A Method for Calculating the Angle of Interference Fringes Based on Fourier Transform and Threshold Traversal of Binary Image [J]. Astronomical Research and Technology, 2017, 14(3): 369-375.
    [3]Li Weijiang, Qi Xin, Wang Feng. Recognition of Solar Activities Based on Heliophysics Event Knowledgebase [J]. Astronomical Research and Technology, 2017, 14(2): 251-260.
    [4]Zhang Bijuan, Wu Yajun, Yuwei, Zhang Xiuzhong. A Method of Calculating the Quantization Threshold for a VLBI DBBC and Its FPGA Implementation [J]. Astronomical Research and Technology, 2013, 10(3): 219-226.
    [5]LIU Jian, LIN Gang-hua. Construction of the Chinese Data-node System for Virtual Solar Observatory [J]. Astronomical Research and Technology, 2008, 5(3): 241-247.
    [6]NI Wei-tou, ZHU Jin, WU Xiang-ping, CHU Guey-bo, YANG Bin, GAO Jian, GUAN Min, TANG Chien-jen, CHOU Yi, CHANG Chung-hao, HUANG Tian-yi, QU Qin-yue, YI Zhao-hua, LI Guang-yu, TAO Jin-he, WU An-ming, LUO Jun, YEH Hsien-chi, ZHOU Ze-bing, XIONG Yao-heng, BI Shao-lan, XU Chong-ming, WU Xue-jun, TANG Meng-xi, BAO Yun, LI Fang-yu, HUANG Cheng, YANG Fu-min, YE Shu-hua, ZHANG Shu-lian, ZHANG Yuan-zhong, NIE Yu-xin, CHEN Guang, CHRISTENSEN-DALSGAARD Joergen, DITTUS Hansjoerg, FUJII Yasunori, LAEMMERZAHL Claus, MANGIN Jean Francois, PETERS Achim, RUEDIGER Albrecht, SAMAIN Etienne, SCHILLER Stephan. Mini-ASTROD: Mission Concept [J]. Publications of the Yunnan Observatory, 2002, 0(3): 123-136.
    [7]LIAO An-chi, NI Wei-tou, SHY Jow-tsong. On the Study of Weak-Light Phase Locking for Laser Astrodynamical Missions [J]. Publications of the Yunnan Observatory, 2002, 0(3): 88-100.
    [8]HUANG Cheng, DING Xiao-li, CHEN Yong-qi. Relativistic Effects on Astro-geodynamics [J]. Publications of the Yunnan Observatory, 2002, 0(3): 55-70.
    [9]YI Zhao-hua. Astrodynamics and Celestial Mechanics [J]. Publications of the Yunnan Observatory, 2002, 0(3): 1-8.
    [10]Xia Zhiguo. Development of Solar Radio Astronomy at Yunnan Observatory [J]. Publications of the Yunnan Observatory, 1997, 0(3): 18-20.

Catalog

    Article views (178) PDF downloads (321) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return