Storing, processing, and transmitting state confidential information are strictly prohibited on this website
Feng Qingchen, Li Xiaoyan. Fault Tree Analysis on Reliability of Mirror Defrosting System of Antarctica Astronomical Telescope[J]. Astronomical Research and Technology, 2018, 15(1): 111-118.
Citation: Feng Qingchen, Li Xiaoyan. Fault Tree Analysis on Reliability of Mirror Defrosting System of Antarctica Astronomical Telescope[J]. Astronomical Research and Technology, 2018, 15(1): 111-118.

Fault Tree Analysis on Reliability of Mirror Defrosting System of Antarctica Astronomical Telescope

More Information
  • Received Date: March 27, 2017
  • Revised Date: June 13, 2017
  • Available Online: November 20, 2023
  • In Antarctic optical telescope operating in Dome A, Antarctic, some mirrors are exposed to harsh environment when the telescope is observing. Frost snow and ice on the surface of the mirrors degrade the transmission and reflection of the optical system. Telescope mirror defrosting system is aimed to settle this problem. In this paper, a fault tree of the mirror defrosting system based on FTA (Fault Tree Analysis) is established to make sure the system works reliably. After qualitative and quantitative analysis of the fault tree, a minimal cut set of the system is obtained and the structure importance ranking of the basic events causing the fault appears. The analysis results show clearly the bottle neck of the system and point out the way to improve the reliability of the system theoretically.
  • [1]
    Masciadri E, Lascaux F, Hagelin S. Optical turbulence:site selection above the internal antarctic plateau with a mesoscale model[C]//Proceedings of SPIE. 2010.
    [2]
    吴晓敏, 戴万田, 王维城. 霜晶生长的界面演变及机制分析[J]. 清华大学学报:自然科学版, 2007, 47(8):1352-1355+1360.

    Wu Xiaomin, Dai Wantian, Wang Weicheng. Theoretical analysis of interface transformation during frost crystal growth[J]. Journal of Tsinghua University:Science and Technology, 2007, 47(8):1352-1355+1360.
    [3]
    高国庆. 基于故障树的自适应光学电控系统故障诊断专家系统的研究[D]. 北京:中国科学院大学, 2016.
    [4]
    高国庆, 周璐春. 基于故障树的自适应光学电控系统可靠性分析[J]. 激光与光电子学进展, 2016(1):46-52.

    Gao Guoqing, Zhou Luchun. Fault tree analysis on reliability of electronic control system of adaptive optics[J]. Laser & Optoelectronic Progress, 2016(1):46-52.
    [5]
    付夏楠, 黄垒, 魏建彦. Mini_GWAC控制系统的故障诊断专家系统[J]. 天文研究与技术, 2016, 13(3):366-372.

    Fu Xianan, Huang Lei, Wei Jianyan. The fault diagnosis expert system of Mini_GWAC[J]. Astronomical Research & Technology, 2016, 13(3):366-372.
    [6]
    段隽喆, 李华聪. 基于故障树的故障诊断专家系统研究[J]. 科学技术与工程, 2009, 9(7):14-17.

    Duan Junzhe, Li Huacong. Based on fault tree's failure diagnosis expert system research[J]. Science Technology and Engineering, 2009, 9(7):14-17.
    [7]
    金亮亮. 基于故障树的航天器故障诊断专家系统研究[D]. 南京:南京航天航空大学, 2008.
    [8]
    梁芬, 姜宏伟. 基于FTA的焊接机器人故障诊断技术研究[J]. 机电工程, 2014, 31(8):1067-1070.

    Liang Fen, Jiang Hongwei. Analysis welding robots diagnosis based on fault tree analysis[J]. Journal of Mechanical & Electrical, 2014, 31(8):1067-1070.
    [9]
    倪绍徐, 张裕芳. 基于故障树的智能故障诊断方法[J]. 上海交通大学学报, 2008, 42(8):1372-1375.

    Ni Shaoxu, Zhang Yufang. Intelligent fault diagnosis method based on fault tree[J]. Journal of Shanghai Jiaotong University, 2008, 42(8):1372-1375.
  • Articles Related

    [1]Chen Xunhao, Wu Hong, Mu Haiyang. Astronomical Observation and Scientific Research of Popular Science Telescope [J]. Astronomical Techniques and Instruments, 2023, 20(6): 606-617. DOI: 10.14005/j.cnki.issn1672-7673.20230928.001
    [2]Deng Biao, Guo Ruocheng, Li Xiaoming, Wang Jing, Deng Yuechuan. The Influence of GPS Data Processing Strategy on the Accuracy of Results and Reliability Analysis [J]. Astronomical Research and Technology, 2021, 18(2): 263-271. DOI: 10.14005/j.cnki.issn1672-7673.20200904.001
    [3]Zhang Yulong, Wang Jianfeng, Li Taoran, Ge Liang, Wu Ying, Zhao Yong, Jiang Xiaojun. The Intelligent Fault Auxiliary Diagnosis System of Astronomical Telescope Based on Observation Image Recognition [J]. Astronomical Research and Technology, 2020, 17(3): 392-398.
    [4]LIN Jing, LIU Zhong, JIN Zhen-yu. High-Resolution Image Reconstruction Technology Applied to the Optical Testing of Ground-Based Astronomical Telescopes [J]. Astronomical Research and Technology, 2004, 1(3): 188-195.
    [5]XIONG Yao-heng, BAI Jing-ming. Astronomical Observation Results Using Adaptive Optical Telescopes [J]. Publications of the Yunnan Observatory, 2000, 0(2): 48-57.
    [6]Kazuya Ayani. Follow-Up Spectroscopy of Supernovae at Bisei Astronomical Observatory [J]. Publications of the Yunnan Observatory, 1999, 0(S1): 318-322.
    [7]Qu Z. Q., Chen X. K., Zhang X. Y., Gu X. M., Feng Y. M., Zhong S. H.. Solar Stokes Spectrum Observation at Yunnan Astronomical Observatory [J]. Publications of the Yunnan Observatory, 1999, 0(S1): 278-281.
    [8]Jong Ae Park, Seog Tae Han, Tai Seong Kim, Kwang Dong Kim, Hyo Ryoung Kim, Hyun Soo Chung, Chang Hoon Lee, Se Hyung Cho, Jongmann Yang. Quasioptical System of Trao Telescope [J]. Publications of the Yunnan Observatory, 1999, 0(S1): 86-89.
    [9]Kaifu, N. Noumaru, J.. Subaru Telescope: Construction and First Light [J]. Publications of the Yunnan Observatory, 1999, 0(S1): 31-32.
    [10]Xiong Yaoheng, Feng Hesheng. A Measurement Method of the Optical Transfere Function for Astronomical Telescopes [J]. Publications of the Yunnan Observatory, 1997, 0(1): 60-64.

Catalog

    Article views (195) PDF downloads (238) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return