Storing, processing, and transmitting state confidential information are strictly prohibited on this website
Yuan Hailong, Zhang Yanxia, Zhang Haotong, Zhao Yongheng. Survey of Stellar Atmosphere Parameter Estimation[J]. Astronomical Research and Technology, 2018, 15(3): 257-265.
Citation: Yuan Hailong, Zhang Yanxia, Zhang Haotong, Zhao Yongheng. Survey of Stellar Atmosphere Parameter Estimation[J]. Astronomical Research and Technology, 2018, 15(3): 257-265.

Survey of Stellar Atmosphere Parameter Estimation

More Information
  • Received Date: November 24, 2017
  • Revised Date: January 30, 2018
  • Available Online: November 20, 2023
  • Starting with the significance of the stellar research, the basic conception and importance of stellar atmosphere parameters are introduced. The two major classes of estimation approaches of stellar atmosphere parameters, the direct technique and the indirect technique, are discussed. This paper focuses on the indirect technique, which can be further divided into several methods:the photometric method, the infrared flux method, the Balmer profile method, the spectral line ratio method, the line index method, the metal line diagnostics method, the spectral template fitting method and the machine learning method. While the spectral template fitting method is widely used in current large spectroscopic survey projects, such as SDSS, RAVE and LAMOST, the machine learning method has shown its advantages in many specific situations. Among various machine learning methods and technologies, the most popular ones are principal component analysis (PCA), k-nearest neighbors (KNN), support vector machine (SVM), and all kinds of artificial neural network (ANN) methods. On the other hand, traditional astrophysical methods still play prominent roles. The metal line diagnostics method is still favored by astronomers when analyzing high resolution spectra. The experimental results from infrared flux method are generally used as calibration.
  • [1]
    Moon T T, Dworetsky M M. Grids for the determination of effective temperature and surface gravity of B, A and F stars using uvby-beta photometry[J]. Monthly Notices of the Royal Astronomical Society, 1985, 217:305-315.
    [2]
    Lester J B, Gray R O, Kurucz R L. Theoreical uvbyß indices[J]. The Astrophysical Journal Supplement Series, 1986, 61:509-529.
    [3]
    Gray R O. Parameterization of stars[J]. Memorie della Società Astronomica Italiana, 2006, 77:1123-1129.
    [4]
    Bailer-Jones C A L. Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry[J]. Monthly Notices of the Royal Astronomical Society, 2011, 411:435-452.
    [5]
    Bayo A, Rodrigo C, Barrado D, et al. Physical parameters of young M-type stars and brown dwarfs with VOSA[C]//Astronomical Society of India Conference Series. 2014:93-101.
    [6]
    Alonso A, Arribas S, Martínez-Roger C. The empirical scale of temperatures of the low main sequence (F0V-K5V)[J]. Astronomy & Astrophysics, 1996, 313:873-890.
    [7]
    Houdashelt M L, Bell R A, Sweigart A V. Improved color-temperature relations and bolometric corrections for cool stars[J]. The Astronomical Journal, 2000, 119(3):1448-1469.
    [8]
    Sekiguchi M, Fukugita M. A study of the B-V color-temperature relation[J]. The Astronomical Journal, 2000, 120(2):1072-1084.
    [9]
    VandenBerg Don A, Clem J L. Empirically constrained color-temperature relations. I. BV(RI)C[J]. The Astronomical Journal, 2003, 126(2):778-802.
    [10]
    Clem J L, Vandenberg D A, Grundahl F, et al. Empirically constrained color-temperature relations. Ⅱ. uvby[J]. The Astronomical Journal, 2004, 127(2):1227-1256.
    [11]
    Ramírez I, Meléndez J. The effective temperature scale of FGK stars. Ⅱ. Teff:color:[Fe/H] calibrations[J]. The Astronomical Journal, 2005, 626(1):465-485.
    [12]
    Blackwell D E, Shallis M J. Stellar angular diameters from infrared photometry. application to Arcturus and other stars; with effective temperatures[J]. Monthly Notices of the Royal Astronomical Society, 1977, 180(2):177-191.
    [13]
    Blackwell D E, Petford A D, Shallis M J. Use of the infra-red flux method for determining stellar effective temperatures and angular diameters-the stellar temperature scale[J]. Astronomy & Astrophysics, 1980, 82(1-2):249-252.
    [14]
    Gray D F. The observation and analysis of stellar photospheres[M].[S. l.]:Cambridge University Press, 1992.
    [15]
    Heiter U, Kupka F, van't Veer-Menneret C, et al. New grids of ATLAS9 atmospheres I:influence of convection treatments on model structure and on observable quantities[J]. Astronomy & Astrophysics, 2002, 392:619-636.
    [16]
    Gray D F, Johanson H L. Precise measurement of stellar temperatures using line-depth ratios[J]. Publications of the Astronomical Society of the Pacific, 1991, 103:439-443.
    [17]
    Worthey G, Faber S M, Gonzalez J J, et al. Old stellar populations. 5:absorption feature indices for the complete LICK/IDS sample of stars[J]. The Astrophysical Journal Supplement Series, 1994, 94(2):687-722.
    [18]
    Rose J A, Bower R G, Caldwell N, et al. Stellar population in early-type galaxies:further evidence for environmental influences[J]. The Astronomical Journal, 1994, 108(6):2054-2068.
    [19]
    Jones L A, Worthey G. New age indicators for old stellar populations[J]. The Astronomical Journal, 1995, 446:L31-L34.
    [20]
    Franchini M, Morossi C, Di Marcantonio P, et al. The Lick/SDSS library. I. synthetic index definition and carlibration[J]. The Astronomical Journal, 2010, 719(1):240-263.
    [21]
    Teixeira G D C, Sousa S G, Tsantaki M, et al. New Teff and[Fe/H] spectroscopic calibration for FGK dwarfs and GK giants[J]. Astronomy & Astrophysics, 2016, 595:A15(8pp).
    [22]
    Sneden C, Bean J, Ivans I, et al. MOOG:LTE line analysis and spectrum synthesis[CP].[S.l.]:Astrophysics Source Code Library, 2012.
    [23]
    Magrini L, Randich S, Friel E, et al. FAMA:an automatic code for stellar parameter and abundance determination[J]. Astronomy & Astrophysics, 2013, 558:A38(10pp).
    [24]
    Valentini M, Morel T, Miglio A, et al. GAUFRE:a tool for an automated determination of atmospheric parameters from spectroscopy[C]//European Physical Journal Web of Conferences. 2013.
    [25]
    Sbordone L, Caffau E, Bonifacio P, et al. MyGIsFOS:an automated code for parameter determination and detailed abundance analysis in cool stars[J]. Astronomy & Astrophysics, 2014, 564:A109(15pp).
    [26]
    Blanco-Cuaresma S, Soubiran C, Heiter U, et al. Determining stellar atmospheric parameters and chemical abundances of FGK stars with iSpec[J]. Astronomy & Astrophysics, 2014, 569:A111(14pp).
    [27]
    Shkedy Z, Decin L, Molenberghs G, et al. Estimating stellar parameters from spectra using a hierarchical Bayesian approach[J]. Monthly Notices of the Royal Astronomical Society, 2007, 377:120-132.
    [28]
    Zwitter T, Siebert A, Munari U, et al. The Radial Velocity Experiment (RAVE):second data release[J]. The Astronomical Journal, 2008, 136(1):421-451.
    [29]
    Lee Y S, Beers T C, Sivarani T, et al. The SEGUE stellar parameter pipeline. I. description and comparison of individual methods[J]. The Astronomical Journal, 2008, 136(5):2022-2049.
    [30]
    Koleva M, Prugniel P, Bouchard A, et al. ULySS:a full spectrum fitting package[J]. Astronomy & Astrophysics, 2009, 501(3):1269-1279.
    [31]
    Prugniel P, Soubiran C. A database of high and medium-resolution stellar spectra[J]. Astronomy & Astrophysics, 2001, 369:1048-1057.
    [32]
    Wu Y, Du B, Luo A L, et al. Automatic stellar spectral parameterization pipeline for LAMOST survey[C]//Proceedings of the International Astronomical Union, IAU Symposium. 2014:340-342.
    [33]
    Cui X Q, Zhao Y H, Chu Y, et al. The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)[J]. Research in Astronomy and Astrophysics, 2012, 12(9):1197-1242.
    [34]
    Tkachenko A. Grid search in stellar parameters:a software for spectrum analysis of single stars and binary systems[J]. Astronomy & Astrophysics, 2015, 581:A129(18pp).
    [35]
    Xiang M, Liu X, Yuan H, et al. The LAMOST stellar parameter pipeline at Peking University-LSP3[J]. Monthly Notices of the Royal Astronomical Society, 2015, 448(1):822-854.
    [36]
    Sánchez-Blázquez P, Peletier R F, Jiménez-Vicente J, et al. Medium-resolution Isaac Newton Telescope library of empirical spectra[J]. Monthly Notices of the Royal Astronomical Society, 2006, 371(2):703-718.
    [37]
    Cenarro A J, Peletier R F, Sánchez-Blázquez P, et al. Medium-resolution Isaac Newton Telescope library of empirical spectra-Ⅱ. the stellar atmospheric parameters[J]. Monthly Notices of the Royal Astronomical Society, 2007, 374(2):664-690.
    [38]
    Frasca A, Molenda-Zakowicz J, De Cat P, et al. Activity indicators and stellar parameters of the Kepler targets. an application of the ROTFIT pipeline to LAMOST-Kepler stellar spectra[J]. Astronomy & Astrophysics, 2016, 594:A39(31pp).
    [39]
    Valdes F, Gupta R, Rose J A, et al. The indo-US library of coudé feed stellar spectra[J]. The Astrophysical Journal Supplement Series, 2004, 152(2):251-259.
    [40]
    García Pérez A E, Allende Prieto C, Holtzman J A, et al. ASPCAP:the APOGEE Stellar Parameter and Chemical Abundances Pipeline[J]. The Astronomical Journal, 2016, 151(6):144(20pp).
    [41]
    Bijaoui A, Recio-Blanco A, de Laverny P. Parameter estimation from an optimal projection in a local environment[C]//American Institute of Physics Conference Series. 2008:54-60.
    [42]
    Collaboration G, Brown A G A, Vallenari A, et al. Gaia data release 1. summary of the astrometric, photometric, and survey properties[J]. Astronomy & Astrophysics, 2016, 595:A2(23pp).
    [43]
    Gulati R K, Gupta R. Automated classification of a large database of stellar spectra[C]//Astronomical Data Analysis Software and Systems IV, ASP Conference Series. 1995:253-256.
    [44]
    Singh H P, Gulati R K, Gupta R. Stellar spectral classification using principal component analysis and artificial neural networks[J]. Monthly Notices of the Royal Astronomical Society, 1998, 295(2):312-318.
    [45]
    Fuentes O, Gulati R K. Instance-based machine learning methods for the prediction of stellar atmospheric parameters[C]//Astronomical Data Analysis Software and Systems IX, ASP Conference Series. 2000:611-614.
    [46]
    Fuentes O, Gulati R K. Prediction of stellar atmospheric parameters from spectra, spectral indices and spectral lines using machine learning[C]//Revista Mexicana de Astronomia y Astrofisica Conference Series. 2001:209-213.
    [47]
    Ramírez J F, Fuentes O, Gulati R K, et al. Prediction of stellar atmospheric parameters using instance-based machine learning and genetic algorithms[J]. Experimental Astronomy, 2001, 12(3):163-178.
    [48]
    Christlieb N, Wisotzki L, Graßhoff G. Statistical methods of automatic spectral classification and their application to the Hamburg/ESO survey[J]. Astronomy & Astrophysics, 2002, 391:397-406.
    [49]
    Bailer-Jones C A L. Automated stellar classification for large surveys:a review of methods and results[M]. London:Narosa Publising House, 2002:83.
    [50]
    Bailer-Jones C A L, Gupta R, Singh H P. An introduction to artificial neural networks[M]. London:Narosa Publising House, 2002:51.
    [51]
    Bailer-Jones C A L. Determination of stellar parameters with GAIA[J]. Astrophysics and Space Science, 2002, 280(1/2):21-29.
    [52]
    Winter C, Jeffery C S, Drilling J S. Automatic classification of subdwarf spectra using a neural network[J]. Astrophysics and Space Science, 2004, 291(3):375-378.
    [53]
    Rodríguez A, Arcaya B, Dafonte C, et al. Automated knowledge-based analysis and classification of stellar spectra using fuzzy reasoning[J]. Expert Systems with Applications, 2004, 27:237-244.
    [54]
    Giridhar S, Muneer S, Goswami A. Automated classification and stellar parameterization[J]. Memorie della Società Astronomica Italiana, 2006, 77:1130-1135.
    [55]
    Re Fiorentin P, Bailor-Jones C A L, Lee Y S, et al. Estimation of stellar atmospheric parameters from SDSS/SEGUE spectra[J]. Astronomy & Astrophysics, 2007, 467(3):1373-1387.
    [56]
    Lee Y S, Beers T C, Carlin J L, et al. Application of the SEGUE stellar parameter pipeline to LAMOST stellar spectra[J]. The Astronomical Journal, 2015, 150(6):187(18pp).
    [57]
    Kerekes G, Csabai I, Dobos L, et al. Photo-Met:a non-parametric method for estimating stellar metallicity from photometric observations[J]. Astronomische Nachrichten, 2013, 334(9):1012-1015.
    [58]
    Muñoz Bermejo J, Asensio Ramos A, Allende Prieto C. A PCA approach to stellar effective temperatures[J]. Astronomy & Astrophysics, 2013, 553:A95(9pp).
    [59]
    Ness M, Hogg D W, Rix H W, et al. The CANNON:a data-driven approach to stellar label determination[J]. The Astronomical Journal, 2015, 808(1):16(21pp).
    [60]
    Mészáros S Z, Holtzman J, García Pérez A E, et al. Calibrations of atmospheric parameters obtained from the first year of SDSS-Ⅲ APOGEE observations[J]. The Astronomical Journal, 2013, 146(5):133(19pp).
    [61]
    Xiang M, Liu X, Shi J, et al. Estimating stellar atmospheric parameters, absolute magnitudes and elemental abundances from the LAMOST spectra with Kernel-based principal component analysis[J]. Monthly Notices of the Royal Astronomical Society, 2017, 464(3):3657-3678.
    [62]
    Li X R, Pan R Y, Duan F Q. Parameterizing stellar spectra using deep neural networks[J]. Astronomy & Astrophysics, 2017, 17(4):36.
    [63]
    Ho A Y Q, Ness M K, Hogg D W, et al. Label transfer from APOGEE to LAMOST:precise stellar parameters for 450,000 LAMOST giants[J]. The Astronomical Journal, 2017, 836:5(15pp).
    [64]
    Casey A R, Hawkins K, Hogg D W, et al. The RAVE-on catalog of stellar atmospheric parameters and chemical abundances for Chemo-dynamic studies in the Gaia era[J]. The Astronomical Journal, 2017, 840:59(19pp).
    [65]
    钟守波, 韩波, 张彦霞, 等. 天文大数据管理工具的设计与实现[J]. 天文研究与技术, 2015, 12(4):510-517.

    Zhong Shoubo, Han Bo, Zhang Yanxia, et al. Design and implementation of a software tool package for managing massive astronomical data[J]. Astronomical Research & Technology, 2015, 12(4):510-517.
    [66]
    涂洋, 张彦霞, 赵永恒, 等. 光谱分析软件在天文学研究中的应用[J]. 天文研究与技术, 2016, 13(1):124-132.

    Tu Yang, Zhang Yanxia, Zhao Yongheng, et al. Application of spectral analysis softwares in astronomy[J]. Astronomical Research & Technology, 2016, 13(1):124-132.
    [67]
    陈淑鑫, 罗阿里, 孙伟民. R语言应用于LAMOST光谱分析初探[J]. 天文研究与技术, 2017, 14(3):363-368.

    Chen Shuxin, Luo Ali, Sun Weimin. Application of R language in LAMOST spectral analysis[J]. Astronomical Research & Technology, 2017, 14(3):363-368.
  • Articles Related

    [1]Meng Jian, Peng Zhaoyang, Chen Jiaming. A Comparative Study on the Characteristics of X-ray Afterglow Variation in Two Types of Gamma Bursts [J]. Astronomical Techniques and Instruments, 2023, 20(5): 369-382. DOI: 10.14005/j.cnki.issn1672-7673.20230517.002
    [2]Hu Shizhan, Yuan Weimin. A Statistical Study of X-ray Stellar Flares of the M-type Star AT Mic [J]. Astronomical Research and Technology, 2022, 19(3): 198-205. DOI: 10.14005/j.cnki.issn1672-7673.20211112.001
    [3]Chang Xuezhao, Peng Zhaoyang, Wang Daozhou, Chen Jiaming. Study on Spectral Lag and Flare Characters Based on GRB 051117A [J]. Astronomical Research and Technology, 2021, 18(4): 427-436. DOI: 10.14005/j.cnki.issn1672-7673.20210316.001
    [4]YANG Jiang-he, WANG Yong-xiang, YANG Ru-shu. X-ray Spectral Properties for Blazars [J]. Astronomical Research and Technology, 2006, 3(3): 217-227.
    [5]ZHOU Yi. Imaging Hard X-ray Telescope Developments in United States and Europe [J]. Astronomical Research and Technology, 2003, 0(1): 106-112.
    [6]ZHANG You-hong. Recent X-ray Observations of Blazars [J]. Astronomical Research and Technology, 2003, 0(1): 26-30.
    [7]BAI Jin-ming. Test Predictions on the X-ray Jets in Radio-loud AGNs via X-ray Observation for FR Ⅱ Radio Galaxies [J]. Astronomical Research and Technology, 2003, 0(1): 19-25.
    [8]YU Wen-fei. Millisecond Quas-Periodic Signals from Low Mass X-ray Binaries—Recent Advance [J]. Astronomical Research and Technology, 2003, 0(1): 12-15.
    [9]LI Xiang-dong. Magnetars as X-ray Pulsars [J]. Astronomical Research and Technology, 2003, 0(1): 1-5.
    [10]ZHANG Feng-hui. The Study of Be/X-ray Binary Envelope [J]. Publications of the Yunnan Observatory, 2000, 0(1): 69-70.

Catalog

    Article views (1204) PDF downloads (2017) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return