Storing, processing, and transmitting state confidential information are strictly prohibited on this website
Liu Yuxuan, Li Chunlai, Liu Jianjun. Automatic Small Crater Recognition Using Digital Elevation Model from Chang'E-2 by Contour Line[J]. Astronomical Research and Technology, 2018, 15(4): 479-486.
Citation: Liu Yuxuan, Li Chunlai, Liu Jianjun. Automatic Small Crater Recognition Using Digital Elevation Model from Chang'E-2 by Contour Line[J]. Astronomical Research and Technology, 2018, 15(4): 479-486.

Automatic Small Crater Recognition Using Digital Elevation Model from Chang'E-2 by Contour Line

More Information
  • Received Date: January 04, 2018
  • Revised Date: April 14, 2018
  • Available Online: November 20, 2023
  • Crater detection is a significant research focus in planetary mission. Most of algorithm focus on big crater because the data resolution is not precise enough. So this article proposes a method about small craters automatic recognition from digital elevation model of chang'e-2 data, which is the most precise lunar global data so far. Firstly, we analyze the feature of little crater model to get the parameter and establish index system. Secondly, we get the contour of test data and extract the candidate. Thirdly, we use the Hough-Transform to get the craters information, including the coordinate and diameter. According to the result of test district, we can conclude that the method is useful. The accuracy of the detection is over 85%, and we can set different parameter for different range of craters. The method and the result are good supplement to recent crater detection research, especially to the little size craters. It is the foundation of global carter database in the future work.
  • [1]
    Honda R, Azuma R. Crater extraction and classification system for lunar images[C]//Memoirs of the Faculty Science Kochi University. 2000:13-22.
    [2]
    Barlow N G. Mars crater database[DB/OL]. 1988[2018-01-05]. http://webgis.wr.usgs.gov/pigwad/down/mars_crater_consortium.htm#barlow2.
    [3]
    McDowell J. A merge of a digital version of the list of lunar craters from NASA catalogue of Lunar nomenclature with the list from the USGS site[DB/OL]. 2007[2018-01-05]. http://www.planet4589.org/astro/lunar/Craters.
    [4]
    Rodionova J F, Shevchenko V V. Morphological catalogue of the craters of the Moon[DB/OL].1987[2018-01-05]. http://selena.sai.msu.ru/Home/Moon_Cat/Moon_cate.htm.
    [5]
    Salamunićcar G, Lončarić S. GT-57633 catalogue of Martian impact craters developed for evaluation of crater detection algorithms[J]. Planetary & Space Science, 2008, 56(15):1992-2008.
    [6]
    Losiak A, Kohout T, Sullivan K O, et al. Lunar impact database[DB/OL]. 2008[2018-01-05]. http://www.lpi.usra.edu/lunar/surface/Lunar_Impact_Crater_Database_v9Feb2009.xls.
    [7]
    Honda R, Iijima Y, Konishi O. Mining of topographic feature from heterogeneous imagery and its application to lunar craters[J]. Progress of Discovery Science, 2002, 2281:395-407.
    [8]
    Sawabe Y, Matsunaga T, Rokugawa S. Automated detection and classification of lunar craters using multiple approaches[J]. Advances in Space Research, 2006, 37(1):21-27.
    [9]
    丁萌, 曹云峰, 吴庆宪. 基于Census变换和Boosting方法的陨石坑区域检测[J]. 南京航空航天大学学报, 2009, 41(5):682-687.

    Ding Meng, Cao Yunfeng, Wu Qingxian. Crater region detection based on Census transform and Boosting[J]. Journal of Nanjing University of Aeronautics & Asstronautics, 2009, 41(5):682-687.
    [10]
    冯军华, 崔祜涛, 崔平远, 等. 行星表面陨石坑检测与匹配方法[J]. 航空学报, 2010, 31(9):1858-1863.

    Feng Junhua, Cui Hutao, Cui Pingyuan, et al. Autonomous crater detection and matching on planetary surface[J]. Acta Aeronautica ET Astronautica Sinica, 2010, 31(9):1858-1863.
    [11]
    Kim J R,Muller J P,Morley J G.Quantitative assessment of automated crater detection on Mars[C]//XXth ISPRS Congress. 2004:456-461.
    [12]
    Bue B D, Stepinski T F. Machine detection of Martian impact craters from digital topography data[J]. IEEE Transactions on Geoscience & Remote Sensing, 2006, 45(1):265-274.
    [13]
    岳宗玉, 刘建忠, 吴淦国. 应用面向对象分类方法对月球撞击坑进行自动识别[J]. 科学通报, 2008, 53(22):2809-2813.
    [14]
    Michael G, Neukum G. Planetary surface dating from crater size-frequency distribution measurements:differential forms of production function polynomials[C]//Lunar and Planetary Science Conference. 2010:39-49.
    [15]
    刘宇轩, 刘建军, 牟伶俐, 等. 撞击坑识别方法综述[J]. 天文研究与技术——国家天文台台刊, 2012, 9(2):203-212.

    Liu Yuxuan, Liu Jianjun, Mou Lingli, et al. A review of impact-crater detection[J]. Astronomical Research & Technology——Publications of National Astronomical Observatories of China, 2012, 9(2):203-212.
    [16]
    王心源, 吉玮, 李超, 等. 基于"嫦娥一号" 数据的月表撞击坑特征的多参数统计分析[J]. 地理研究, 2012, 31(2):369-376.

    Wang Xinyuan, Ji Wei, Li Chao, et al. Multi-parameters statistical analysis of impact craters features on lunar surface based on Chang'e-1[J]. Geographical Research, 2012, 31(2):369-376.
    [17]
    赵金锦, 刘建军, 牟伶俐. 月表撞击坑形貌特征和几何形态关系分析[J]. 天文研究与技术——国家天文台台刊, 2014, 11(1):80-88.

    Zhao Jinjin, Liu Jianjun, Mou Lingli. An analysis of morphological features and relations between geometrical parameters of lunar impact craters[J]. Astronomical Research & Technology——Publications of National Astronomical Observatories of China, 2014, 11(1):80-88.
    [18]
    Bue B D, Stepinski T F. Machine detection of Martian impact craters from digital topography data[J]. IEEE Transactions on Geoscience & Remote Sensing, 2006, 45(1):265-274.
    [19]
    Heiken G H, Vaniman D T, French B M. Lunar sourcebook-A user's guide to the moon[M]. New York:Cambridge University Press, 1991:62-64.
    [20]
    Shufelt J A. Performance evaluation and analysis of monocular building extraction from aerial imagery[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(4):311-326.
  • Articles Related

    [1]LI You-bing, LÜ Lian-zhong, PENG Qing-song. Relation between the Lyman-α Emission and Absorption Lines of Quasar Pairs [J]. Astronomical Research and Technology, 2008, 5(4): 323-329.
    [2]Wolfram Kollatschny. Structure and Kinematics of Emission Line Regions in AGN [J]. Astronomical Research and Technology, 2003, 0(S1): 32-41.
    [3]HUANG Ke-liang, BIAN Wei-hao. Quasar Absorption Lines [J]. Publications of the Yunnan Observatory, 2000, 0(3): 1-9.
    [4]LI Ke-jun, GU Xiao-ma, LI Qiu-sha, LI Jian-yong. Spectral Analysis of the D3 Emission Lines of a Mound Prominence I-Characteristics and Calculations of the D3 Lines [J]. Publications of the Yunnan Observatory, 2000, 0(1): 20-26.
    [5]Xu D. W.. Is There a Link Between Emission-Line Widths and X-Ray Continuum Slopes in Narrow Line Seyfert 1 Galaxies? [J]. Publications of the Yunnan Observatory, 1999, 0(S1): 314-317.
    [6]Ye Shihui. The Depths of Formation of Solar Spectral Lines [J]. Publications of the Yunnan Observatory, 1997, 0(3): 66-74.
    [7]Xiong Guanzhu, Chen Peisheng. Blackbody Line in the Infrared Color-Color Diagram [J]. Publications of the Yunnan Observatory, 1997, 0(3): 50-57.
    [8]Li Kejun, Bai Jinming. Analysis of the Line Spectrum of A Prominence by Means of the Dimension Descending Method [J]. Publications of the Yunnan Observatory, 1993, 0(2): 20-25.
    [9]Li Kejun, Bai Jinming, Xiang Fuyuan. Preliminary Exploration of the Mathematical Method for Fitting Line Profiles [J]. Publications of the Yunnan Observatory, 1993, 0(1): 5-9.
    [10]Ye Shihui. Diagnostics of the Twisting of the Magnetic Lines of Force in Sunspots with the Depth [J]. Publications of the Yunnan Observatory, 1992, 0(3): 1-7.

Catalog

    Article views (396) PDF downloads (135) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return