Storing, processing, and transmitting state confidential information are strictly prohibited on this website
Guo Min, Shang Zhenhong, Qiang Zhenping, Li Jingtao, Xian Xianggui, Yang Zhipeng. Research Progress on Detection of Coronal Mass Ejection[J]. Astronomical Research and Technology, 2020, 17(1): 39-51.
Citation: Guo Min, Shang Zhenhong, Qiang Zhenping, Li Jingtao, Xian Xianggui, Yang Zhipeng. Research Progress on Detection of Coronal Mass Ejection[J]. Astronomical Research and Technology, 2020, 17(1): 39-51.

Research Progress on Detection of Coronal Mass Ejection

More Information
  • Received Date: May 16, 2019
  • Revised Date: June 11, 2019
  • Available Online: November 20, 2023
  • A Coronal Mass Ejection (CME) is a large-scale, severely explosive phenomenon that is the main solar outburst affecting the Earth. As this kind of explosion will cause serious interference to the terrestrial environment, detecting CMEs is of great significance for forecasting severe space weather. In order to more clearly sort out the existing CME detection methods, this paper analyzes and summarizes the typical methods. Firstly,CMEs and their characteristics are introduced. Then, CMEs detection methods are summarized and analyzed from two aspects:manual methods and automatic methods. Finally, problems of the current algorithms are discussed and the future research direction is proposed.
  • [1]
    WEBB D F, HOWARD T A. Coronal mass ejections:observations[J]. Living Reviews in Solar Physics, 2012, 9(1):article id. 3(83pp).
    [2]
    YASHIRO S, GOPALSWAMY N, MICHALEK G, et al. A catalog of white light coronal mass ejections observed by the SOHO spacecraft[J]. Journal of Geophysical Research:Space Physics, 2004, 109(A7):article id. A07105(11pp).
    [3]
    姚海, 尹建芹, 林佳本, 等. 一种端到端的日冕物质现象检测新方法[J]. 科学通报, 2017, 62(23):2680-2690.
    [4]
    HUNDHAUSEN A J, SAWYER C B, HOUSE L, et al. Coronal mass ejections observed during the Solar Maximum Mission:latitude distribution and rate of occurrence[J]. Journal of Geophysical Research:Space Physics, 1984, 89(A5):2639-2646.
    [5]
    ROBBRECHT E, BERGHMANS D. Automated recognition of coronal mass ejections (CMEs) in near-real-time data[J]. Astronomy & Astrophysics, 2004, 425(3):1097-1106.
    [6]
    高朋鑫, 李可军. 日冕物质抛射基本物理参数的统计特征[J]. 天文学进展, 2008, 26(2):117-128.
    [7]
    YASHIRO S, MICHALEK G, GOPALSWAMY N. A comparison of coronal mass ejections identified by manual and automatic methods[J]. Annales Geophysicae, 2008, 26(10):3103-3112.
    [8]
    BERGHMANS D, FOING B H, FLECK B. Automated detection of CMEs in LASCO data[C]//Proceedings of the SOHO 11 Symposium on From Solar Min to Max:Half a Solar Cycle with SOHO. 2002:437-440.
    [9]
    OLMEDO O, ZHANG J, WECHSLER H, et al. Automatic detection and tracking of coronal mass ejections in coronagraph time series[M]. Berlin:Springer, 2008:275-289.
    [10]
    OLMEDO O, ZHANG J. Partial torus instability[J]. The Astrophysical Journal, 2010, 718(1):433-440.
    [11]
    QU M, SHIH F Y, JING J, et al. Automatic detection and classification of coronal mass ejections[J]. Solar Physics, 2006, 237(2):419-431.
    [12]
    BOURSIER Y, LLEBARIA A, GOUDAIL F, et al. Automatic detection of coronal mass ejections on LASCO-C2 synoptic maps[C]//Proceedings of SPIE. 2005.
    [13]
    BOURSIER Y, LAMY P, LLEBARIA A, et al. The ARTEMIS catalog of LASCO coronal mass ejections[J]. Solar Physics, 2009, 257(1):125-147.
    [14]
    GONZÄLEZ-GÍMEZ D, BLANCO-CANO X, RAGA A C. CME classification based on wavelet spectra[J]. Solar Physics, 2010, 266(2):337-347.
    [15]
    GALLAGHER P T, YOUNG C A, BYRNE J P, et al. Coronal mass ejection detection using wavelets, curvelets and ridgelets:applications for space weather monitoring[J]. Advances in Space Research, 2011, 47(12):2118-2126.
    [16]
    GOUSSIES N, STENBORG G, VOURLIDAS A, et al. Tracking of coronal white-light events by texture[J]. Solar Physics, 2010, 262(2):481-494.
    [17]
    GOUSSIES N A, MEJAIL M E, JACOBO J, et al. Detection and tracking of coronal mass ejections based on supervised segmentation and level set[J]. Pattern Recognition Letters, 2010, 31(6):496-501.
    [18]
    BRAGA C R, DAL LAGO A, STENBORG G. Pseudo-automatic characterization of the morphological and kinematical properties of coronal mass ejections using a texture-based technique[J]. Advances in Space Research, 2013, 51(10):1949-1965.
    [19]
    MORGAN H, BYRNE J P, HABBAL S R. Automatically detecting and tracking coronal mass ejections. I. separation of dynamic and quiescent components in coronagraph images[J]. The Astrophysical Journal, 2012, 752(2):article id. 144(14pp).
    [20]
    曾昭宪, 刘毅, 魏雅利. 基于频谱突变分析的日冕物质抛射识别方法[J]. 华中科技大学学报(自然科学版), 2012(增刊1):379-383.
    [21]
    COLANINNO R C, VOURLIDAS A. Analysis of the velocity field of CMEs using optical flow methods[J]. The Astrophysical Journal, 2006, 652(2):1747.
    [22]
    GISSOT S F, HOCHEDEZ J F, DIBOS F, et al. Extracting the apparent motion from two successive EIT images[C]//Proceedings of the International Solar Cycle Studies (ISCS) Symposium. 2003:853-856.
    [23]
    ZHANG L, YIN J Q, LIN J B, et al. Detection of coronal mass ejections using AdaBoost on grayscale statistic features[J]. New Astronomy, 2016, 48:49-57.
    [24]
    ZHANG L, YIN J Q, LIN J B, et al. Detection of coronal mass ejections using multiple features and space-time continuity[J]. Solar Physics, 2017, 292(7):article id. 91(16pp).
    [25]
    YIN J Q, YAO H, LIN J B, et al. Coronal Mass Ejections detection using multiple features based ensemble learning[J]. Neurocomputing, 2017, 244:123-130.
    [26]
    JÄHNE B. Digital image processing:concepts, algorithms, and scientific applications[M]. Berlin:Springer, 1997.
    [27]
    HARALICK R M, SHANMUGAM K. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973(6):610-621.
    [28]
    MORGAN H, HABBAL S R, WOO R. The depiction of coronal structure in white-light images[J]. Solar Physics, 2006, 236(2):263-272.
    [29]
    HEITZ F, PE REZ P, BOUTHEMY P. Multiscale minimization of global energy functions in some visual recovery problems[J]. CVGIP:Image Understanding, 1994, 59(1):125-134.
    [30]
    LI Z, LIU J, TANG J, et al. Robust structured subspace learning for data representation[J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10):2085-2098.
    [31]
    TANG J, LI Z, WANG M, et al. Neighborhood discriminant hashing for large-scale image retrieval[J]. IEEE Transactions on Image Processing, 2015, 24(9):2827-2840.
    [32]
    SCHAPIRE R E, FREUND Y, BARTLETT P, et al. Boosting the margin:a new explanation for the effectiveness of voting methods[C]//Proceedings of 14th International Conference on Machine Learning. 1997:322-330.
    [33]
    HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006, 70:489-501.
  • Articles Related

    [1]Xian Xianggui, Shang Zhenhong, Yuan Meiyu, Yang Zhipeng, Qiang Zhenping. Detection Algorithm of Coronal Mass Ejections Based on Faster R-CNN [J]. Astronomical Research and Technology, 2022, 19(1): 65-77. DOI: 10.14005/j.cnki.issn1672-7673.20210429.001
    [2]Xie Ruixiang, Wang Min, Yan Yihua, Tan Chengming. Observational Characteristics of CME Events and Associated Radio Emission [J]. Astronomical Research and Technology, 2011, 8(2): 95-99.
    [3]MA Yuan, WANG De-yu, YAN Yi-hua. Statistical Analyses of the Type Ⅲ Bursts and CMEs During the 23rd Solar Cycle [J]. Astronomical Research and Technology, 2006, 3(4): 321-327.
    [4]YAO Yin-bo, SHAO Cheng-wen, SHI Shuo-biao, LI Wei-hua, XU Chun, LIU Yu-ying. Primary Analysis of CMEs Associted with the Radio Emission During October 22 to November 03,2002 [J]. Astronomical Research and Technology, 2005, 2(2): 105-113.
    [5]LI Le-ping, MA Su-li, CHEN Hua-dong, ZHAO Shi-qing, LI Qiong-ying, JIANG Yun-chun. The Study of Flare and Relative CME within the Solar Active Region 10537 on Jan.8th,2004 [J]. Astronomical Research and Technology, 2005, 2(2): 91-98.
    [6]MA Su-li, LI Le-ping, CHEN Hua-dong, LI Qiong-ying, ZHAO Shi-qing, JIANG Yun-chun. The Study of Ring-filament Eruption and CME in AR0588 on 2004 April 11 [J]. Astronomical Research and Technology, 2005, 2(2): 82-90.
    [7]MA Yuan, LIU Yu yin, YAN Yi hua, FU Qi jun. Statistics and Analysis on the Relation Between Microwave Type Ⅲ Bursts and CME Events [J]. Astronomical Research and Technology, 2003, 0(3): 16-21.
    [8]MA Yuan, LI Chun-sheng, SONG Qian. A Spectacular Coronal Mass Ejection Event and Associated Phenomena [J]. Publications of the Yunnan Observatory, 2002, 0(4): 10-18.
    [9]CAO Ying. Observation and Research of the Interaction of Solar Metric Wave Spikes with Flares and CME [J]. Publications of the Yunnan Observatory, 2000, 0(1): 73-74.
    [10]Kozai, Yoshihide, TAMA Team. Laser Interferometer for Detection of Gravitational Wave-TAMA-300 [J]. Publications of the Yunnan Observatory, 1999, 0(S1): 35-35.

Catalog

    Article views (353) PDF downloads (48) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return