Storing, processing, and transmitting state confidential information are strictly prohibited on this website
Li Zhenqiang, Zhang Xuguo, Li Jibin, Zhang Hailong, Sun Jixian. The Harmonic Interference Problem of LO in Delingha mm Wave Telescope[J]. Astronomical Research and Technology, 2020, 17(1): 60-67.
Citation: Li Zhenqiang, Zhang Xuguo, Li Jibin, Zhang Hailong, Sun Jixian. The Harmonic Interference Problem of LO in Delingha mm Wave Telescope[J]. Astronomical Research and Technology, 2020, 17(1): 60-67.

The Harmonic Interference Problem of LO in Delingha mm Wave Telescope

More Information
  • Received Date: May 08, 2019
  • Revised Date: May 28, 2019
  • Available Online: November 20, 2023
  • In radio astronomy, the problem of RFI (Radio Frequency Interference) is various and complex. In the face of different RFI problems and interference mechanisms, the pertinent methods are adopted. The RFI mitigation at the device stage can prevent RFI from entering the telescope. A 9-beam sideband separation superconducting receiver for Delingha millimeter-wave telescope is introduced. 18 LO (Local Oscillator) signals are allocated by a LO chain system. Aiming at the IF (Intermediate Frequency) narrowband interference caused by the harmonic signal of the signal generator in the LO chain, a test scheme of injecting simulated harmonic signal is designed. The interference mechanism, the correspondence between the frequency and power of interference signal and the frequency of harmonic signal are confirmed. The transmission path of harmonic interference is analyzed and verified. In order to mitigate harmonic interference, the YIG filter with band-pass characteristic of variable frequency band is used to filter out harmonic signal in the LO chain system. The harmonic signal is prevented from coupling into the receiver system and the mitigation of harmonic interference is completed.
  • [1]
    ARNOLD S. Getting started in radio astronomy[M]//The history of radio astronomy. Berlin:Springer, 2014:3-5.
    [2]
    杨戟. 中国射电天文的研究与发展[J]. 中国科学院院刊, 2011, 26(5):511-515.
    [3]
    杨戟, 曹凝. 超导成像频谱仪[J]. 中国科学院院刊, 2011, 26(4):478-481.
    [4]
    WU Y F, LIU T, MENG F Y, et al. Gas emissions in Planck cold dust clumps-a survey of the J=1-0 transitions of 12CO, 13CO, and C18O[J]. The Astrophysical Journal, 2012, 756(1):article id. 76(24pp).
    [5]
    LIU T, WU Y F, ZHANG H W. Molecular environments of 51 Planck cold clumps in the orion complex[J]. The Astrophysical Journal Supplement Series, 2012, 202(1):article id. 4(18pp).
    [6]
    MENG F Y, WU Y F, LIU T. Mapping study of 71 Planck cold clumps in the Taurus, Perseus, and California Complexes[J]. The Astrophysical Journal Supplement Series, 2013, 209(2):article id. 37(23pp).
    [7]
    LIU T, WU Y F, ZHANG H W. Gaseous CO abundance-an evolutionary tracer for molecular clouds[J]. The Astrophysical Journal, 2013, 775(1):article id. L2(20pp).
    [8]
    SUN Y, XU Y, YANG J, et al. A possible extension of the scutum-centaurus arm into the outer second quadrant[J]. The Astrophysical Journal Letters, 2015, 798(2):article id. L27(5pp).
    [9]
    单文磊, 史生才, 杨戟, 等. 3毫米波段9像元超导接收机前端[C]//中国电子学会微波分会. 2009年全国微波毫米波会议论文集(下册). 贵州:中国电子学会微波分会, 2009:1205-1207.
    [10]
    孙继先, 逯登荣, 杨戟, 等. 德令哈13.7m望远镜谱线OTF观测系统[J]. 天文学报, 2018, 59(1):24-35.
    [11]
    胡浩, 张海燕, 甘恒谦, 等. FAST工程综合测试微波暗室设计与实现[J]. 天文研究与技术, 2018, 15(4):487-494.
    [12]
    朱世宇, 王壮, 王梦南, 等. 基于多项式模型的射电天文中的移动干扰消除[J]. 天文研究与技术, 2017, 14(3):297-303.
    [13]
    李振强, 李积斌, 张旭国, 等. 德令哈13.7m望远镜接收机抗射频干扰研究[J]. 天文学报, 2019, 60(3):63-77.
  • Articles Related

    [1]Zhang Hailong, Zhang Yazhou, Wang Jie, Ye Xinchen, Wang Wanqiong, Li Jia, Zhang Meng, Du Xu. Application of RFI Mitigation Technology in Radio Astronomy [J]. Astronomical Research and Technology, 2022, 19(6): 613-625. DOI: 10.14005/j.cnki.issn1672-7673.20220415.002
    [2]Zhang Yazhou, Zhang Hailong, Zhang Meng, Wang Jie, Ye Xinchen, Wang Wanqiong, Li Jia, Du Xu. Preliminary Study of Transient RFI Feature Recognition Algorithm Based on Template [J]. Astronomical Research and Technology, 2022, 19(5): 479-486. DOI: 10.14005/j.cnki.issn1672-7673.20210915.001
    [3]Li Zhenqiang, Zhang Xuguo, Li Jibin, Sun Jixian, Lu Dengrong, Dong Shouhao, Li Yapeng, Li Shengxue. Real-time Digital FFT Spectrometer for Delingha 13.7 m Telescope [J]. Astronomical Research and Technology, 2022, 19(5): 423-431. DOI: 10.14005/j.cnki.issn1672-7673.20210916.002
    [4]Liu Chendi, Zhou Jianfeng, Su Yan. Signal Interference Suppression of Chang'e-4 Low Frequency Radio Spectrometer Based on CLEAN Algorithm [J]. Astronomical Research and Technology, 2022, 19(3): 206-220. DOI: 10.14005/j.cnki.issn1672-7673.20210531.002
    [5]Dai Wei, Shang Zhenhong, Xu Yonghua, Liu Hui, Yang Yaguang, Qiang Zhenping. Radio Frequency Mitigation Using Independent Component Analysis [J]. Astronomical Research and Technology, 2019, 16(3): 268-277.
    [6]Miao Keke, Wang Zhuang, Cheng Zhu, Huang Da. A Study of Methods of Adaptive Cancellations of Radio Frequency Interferences in Radio Astronomy [J]. Astronomical Research and Technology, 2015, 12(4): 433-442.
    [7]LIU Dong-liang, John Ford, Glen Langston, NAN Ren-dong. Design and Test of an IBOB based Wideband Digital Spectrometer System for a Radio Telescope [J]. Astronomical Research and Technology, 2010, 7(1): 27-32.
    [8]CHEN Zhi-jun, YAN Yi-hua, LIU Yu-ying, ZHANG Jian, WANG Wei. Site Survey and RFI Test for CSRH [J]. Astronomical Research and Technology, 2006, 3(2): 168-175.
    [9]Chen Jingying, Zheng Xiangmin, Xia Zhiguo. A Fast Data Acquisition System and the Programming for the Meter-Wave Dynamic Spectrometer [J]. Publications of the Yunnan Observatory, 1993, 0(1): 10-19.
    [10]Wang Jing-sheng. An Experimental Project of Acousto-optical Spectrograph on Solar Meter-Wave Radio Emission [J]. Publications of the Yunnan Observatory, 1979, 0(4): 21-27.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return