Storing, processing, and transmitting state confidential information are strictly prohibited on this website
Gao Zhenbin, Li Mengci, Qiu Bo, Chen Jianjun, Cao Zihuang, Song Tao. Research on Denoising Algorithm for Camera Image of All-day Camera[J]. Astronomical Research and Technology, 2020, 17(1): 76-84.
Citation: Gao Zhenbin, Li Mengci, Qiu Bo, Chen Jianjun, Cao Zihuang, Song Tao. Research on Denoising Algorithm for Camera Image of All-day Camera[J]. Astronomical Research and Technology, 2020, 17(1): 76-84.

Research on Denoising Algorithm for Camera Image of All-day Camera

More Information
  • Received Date: June 01, 2019
  • Revised Date: August 15, 2019
  • Available Online: November 20, 2023
  • The all-day camera cloud image has important value in the field of astronomical observation, but the noise contained in the cloud image will have an adverse effect. The objective of this paper is to perform cloud image denoising processing.This paper has analyzed starlight noise, moonlight noise, daylight noise, lightning noise, reflective noise and special noise, and has summarized the characteristics of different types of noise distribution, region size and so on. Finally, eight kinds of image processing denoising algorithms such as boundary threshold method, timeline method and inverse proportional linear transformation are proposed based on the relative positional relationship with the cloud layer. The algorithms are combined to form a complete denoising system. Through experiments, different algorithms are compared to obtain the best denoising scheme under different noise conditions. According to the experimental results, we can draw conclusions that the system can effectively remove common noise, basically maintain the information integrity of the cloud layer and the sky, and can easily realize the cloud image denoising.
  • [1]
    戴李杰, 张长江, 薛利成, 等. 红外卫星云图和相关向量机的有眼热带气旋客观定强模型[J]. 遥感学报, 2018, 22(4):51-60.
    [2]
    洪毅, 李玉柱, 陈智源, 等. FY-2卫星数字云图的细网格定量处理[J]. 浙江气象, 2008, 29(1):3-6.
    [3]
    张长江. 红外台风云图分割的模糊技术[C]//第26届中国气象学会年会热带气旋科学研讨会分会场论文集. 2009.
    [4]
    刘磊, 高太长, 孙学金, 等. 地基全天空红外图像云分类研究[C]//"推进气象科技创新, 提高防灾减灾和应对气候变化能力"——江苏省气象学会第七届学术交流会论文集. 2011.
    [5]
    DEV S, WEN B, LEE Y H, et al. Ground-based image analysis:a tutorial on machine-learning techniques and applications[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 4(2):79-93.
    [6]
    ZORAN D, WEISS Y. From learning models of natural image patches to whole image restoration[C]//Proceedings of the IEEE International Conference on Computer Vision. 2011.
    [7]
    WEN B, RAVISHANKAR S, BRESLER Y. Structured overcompletesparsifying transform learning with convergence guarantees and applications[J]. International Journal of Computer Vision, 2015, 114(2/3):137-167.
    [8]
    ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12):3736-3745.
    [9]
    杨俊, 谢勤岚. 基于DCT过完备字典和MOD算法的图像去噪方法[J]. 计算机与数字工程, 2012, 40(5):100-103.
    [10]
    陈源. 基于多尺度几何分析的卫星云图融合方法及对台风中心定位的影响[D]. 金华:浙江师范大学, 2014.
    [11]
    彭焕文, 辛玉新, 和寿圣, 等. 丽江天文观测站全天相机介绍[J]. 天文研究与技术, 2015, 12(1):89-95.
    [12]
    LONG C N, SABBURG J M, CALBÓ J, et al. Retrieving cloud characteristics from ground-based daytime color all-sky images[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(5):633-652.
    [13]
    CHAUVIN R, NOU J, THIL S, et al. Cloud detection methodology based on a sky-imaging system[J]. Energy Procedia, 2015, 69:1970-1980.
    [14]
    ROMÁN R, CAZORLA A, TOLEDANO C, et al. Cloud cover detection combining high dynamic range sky images and ceilometer measurements[J]. Atmospheric Research, 2017, 196:224-236.
    [15]
    ALONSO J, BATLLES F J, VILLARROEL C, et al. Determination of the sun area in sky camera images using radiometric data[J]. Energy Conversion and Management, 2014, 78:24-31.
    [16]
    胡树贞, 马舒庆, 陶法, 等. 基于红外实时阈值的全天空云量观测[J]. 应用气象学报, 2013, 24(2):179-188.
    [17]
    魏诗雅, 邱波, 曹子皇, 等. 一种全天相机云图的自动处理方法[J]. 天文研究与技术, 2019, 16(1):85-92.
    [18]
    WANG J, YANG Y, MAO J H, et al. CNN-RNN:a unified framework for multi-label image classification[C]//Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition. 2016.
    [19]
    PHAN N. Generative adversarial networks[J]. High Technology Letters, 2019(1):35-41.

Catalog

    Article views (351) PDF downloads (64) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return