Citation: | Liang Bo, Lin Yuqi, Dai Wei, Feng Song, Yang Yunfei. Prediction and Analysis of Sunspot Activity Based on Multivariable LSTM Network[J]. Astronomical Research and Technology, 2020, 17(3): 322-333. |
[1] |
苏同卫, 李可军. 太阳活动对中国中纬度地区8级大地震的可能触发[J]. 天文研究与技术——国家天文台台刊, 2007, 4(2):195-198.
|
[2] |
沈玫, 吕达仁. 太阳活动与天气和气候变化的关系的评述[J]. 云南天文台台刊, 1989(增刊1):242-254.
|
[3] |
DU Z L, LI R, WANG H N.The predictive power of ohl's precusor method[J]. The Astronomical Journal, 2009, 138(6):1998-2001.
|
[4] |
SCHATTEN K H, SOFIA S. Forecast of an exceptionally large even-numbered solar cycle[J]. Geophysical Research Letters, 2013, 14(6):632-635.
|
[5] |
SARP V, KILCIK A, YURCHYSHYN V, et al. Prediction of solar cycle 25:a non-linear approach[J]. Monthly Notices of the Royal Astronomical Society, 2018, 481(3):2981-2985.
|
[6] |
KILCIK A, ANDERSON C N K, ROZELOT J P, et al. Nonlinear prediction of solar cycle 24[J]. The Astrophysical Journal, 2008, 693(2):1173-1177.
|
[7] |
AGUIRRE L A, LETELLIER C, MAQUET J. Forecasting the time series of sunspot numbers[J]. Solar Physics, 2008, 249(1):103-120.
|
[8] |
MARIS G, ONCICA A. Solar cycle 24 forecasts[J]. Sun & Geosphere, 2006, 1(1):8-11.
|
[9] |
KITIASHVILI I, KOSOVICHEV A G. Application of data assimilation method for predicting solar cycles[J]. The Astrophysical Journal, 2008, 688(1):L49-L52.
|
[10] |
KITIASHVILI I N, KOSOVICHEV A G. Nonlinear dynamical modeling of solar cycles using dynamo formulation with turbulent magnetic helicity[J]. Geophysical & Astrophysical Fluid Dynamics, 2009, 103(1):53-68.
|
[11] |
PETROVAY K. Solar cycle prediction[J]. Living Reviews in Solar Physics, 2010, 7(1):1-59.
|
[12] |
SARP V, KILCIK A, YURCHYSHYN V, et al. Prediction of solar cycle 25:a non-linear approach[J]. Monthly Notices of the Royal Astronomical Society, 2018, 481(3):2981-2985.
|
[13] |
BHOWMIK P, NANDY D. Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions[J]. Nature Communications, 2018, 9(1):1-10.
|
[14] |
PESNELL W D, SCHATTEN K H. An early prediction of the amplitude of Solar Cycle 25[J]. Solar Physics, 2018, 293(7):112-121.
|
[15] |
PALA Z, ATICI R. Forecasting sunspot time series using deep learning methods[J]. Solar Physics, 2019, 294(5):50-63.
|
[16] |
ATTIA A F, ISMAIL H A, BASURAH H M. A neuro-fuzzy modeling for prediction of solar cycles 24 and 25[J]. Astrophysics and Space Science, 2013, 344(1):5-11.
|
[17] |
DANI T, SULISTIANI S. Prediction of maximum amplitude of solar cycle 25 using machine learning[C]//Proceedings of the 10th Southeast Asia Astronomy Network. 2019.
|
[18] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
|
[19] |
GALILI T. R-bloggers:time series deep learning:forecasting sunspots with kerasstatefullstm in r[EB/OL]. (2018-04-17)[2019-11-27]. https://www.r-bloggers.com/time-series-deep-learning-forecasting-sunspots-with-keras-stateful-lstm-in-r/.
|
[20] |
DANCHO M, KEYDANA S. RStudio AI Blog:predicting sunspot frequency with keras[EB/OL]. (2018-06-25)[2019-11-27]. https://blogs.rstudio.com/tensorflow/posts/2018-06-25-sunspots-lstm/.
|
[1] | Jie Cao, Tingting Xu, Linhua Deng, Xueliang Zhou, Xinhua Zhao, Nanbin Xiang, Fuyu Li, Miao Wan, Weihong Zhou. Hemispheric prediction of solar cycles 25 and 26 from multivariate sunspot time-series data via Informer models [J]. Astronomical Techniques and Instruments, 2025, 2(1): 16-26. DOI: 10.61977/ati2024047 |
[2] | Zhang Yu, Qu Lili, Dong Shaowu, Zhang Jihai, Bai Shanshan, Wang Yiheng. Data Analysis and Research Based on Time-frequency Data Platform [J]. Astronomical Techniques and Instruments, 2023, 20(5): 471-477. DOI: 10.14005/j.cnki.issn1672-7673.20221102.001 |
[3] | Gao Qingpeng, Li Chunxiao, Li Rongwang, Duan Jianfeng, Li Yuqiang. Magpie Bridge Satellite Laser Ranging Time Window and Distance Probability Analysis [J]. Astronomical Research and Technology, 2019, 16(4): 422-430. |
[4] | Li Linsen. Evolutional Time Scale of Mass and Radius of T Tauri and Its Influence on the Rotation under the Action of the Ejected Material and Gravitational Contraction in the Step of the Slow Gravitational Contraction [J]. Astronomical Research and Technology, 2017, 14(2): 150-156. |
[5] | Qiu Guangliang, Zhang Xiong, Qian Wenfeng. Analysis of Integration Time and Photometric Error of the CCD Photometry for the BL Lac Object ON231 [J]. Astronomical Research and Technology, 2013, 10(1): 1-6. |
[6] | Zheng Lianhui, Jin Zhenyu, Xiang Yongyuan. Analysis of Effects of Errors of the Absolute Difference Algorithm on Day-time Seeing Measurement [J]. Astronomical Research and Technology, 2012, 9(2): 157-161. |
[7] | Kang Silin, Li Yuqiang. Error Analysis of GPS Positioning [J]. Astronomical Research and Technology, 2010, 7(3): 222-230. |
[8] | XIE Rui-xiang, HAO Long-fei, YAN Yi-hua, XU Chun, LIU Yu-ying, SHI Shuo-biao, LI Wei-hua. Radio Time Profiles and Magnetic Configurations of Two 2-step Triggering Solar Flares [J]. Astronomical Research and Technology, 2006, 3(3): 247-257. |
[9] | Liu W, Hu J. Y.. CCD Time-Resolved Photometry of Four Newly Discovered CVs [J]. Publications of the Yunnan Observatory, 1999, 0(S1): 386-390. |
[10] | Mei Qing GAO, Nan KONG, Jing Tian XIANG, Gui Qing ZHANG. THE PREDICTION OF GEOMAGNETIC ACTIVITY MAXIMUM AND PEAK TIME IN 22ND SOLAR CYCLE [J]. Publications of the Yunnan Observatory, 1989, 0(S1): 317-322. |