Storing, processing, and transmitting state confidential information are strictly prohibited on this website
Li Rongkai, Li Xirui, Cai Yong. Research on Fault Diagnosis of Hydrogen Maser Based on Machine Learning[J]. Astronomical Research and Technology, 2020, 17(3): 349-356.
Citation: Li Rongkai, Li Xirui, Cai Yong. Research on Fault Diagnosis of Hydrogen Maser Based on Machine Learning[J]. Astronomical Research and Technology, 2020, 17(3): 349-356.

Research on Fault Diagnosis of Hydrogen Maser Based on Machine Learning

More Information
  • Received Date: December 10, 2019
  • Revised Date: December 25, 2019
  • Available Online: November 20, 2023
  • Hydrogen maser, as a precise time-keeping and punctual instrument, plays an important role in scientific research and engineering application. However, at present, hydrogen maser in China still has problems such as equipment failure and poor reliability. In order to simplify the troubleshooting process for technicians and improve maintenance efficiency, this article proposes a method that uses machine learning to take hydrogen maser historical data as training samples, combines DBSCAN and artificial neural network algorithms to obtain a clock diagnostic model, thereby greatly simplifying the troubleshooting process. The trained model was deployed on the embedded system in the experiment, then real-time prediction result was given to the technical staff as a reference, which confirmed the feasibility and effectiveness of this method.
  • [1]
    王国瑞, 杜燕, 李锡瑞. 氢脉泽调制技术和研究[J]. 天文研究与技术, 2018, 15(4):473-478.
    [2]
    邓小波, 赵斌, 王铮. 原子钟在线监测评估方法设计[J]. 无线电工程, 2018, 48(1):46-49.
    [3]
    YE F M, ZHANG Z B, CHAKRABARTY K, et al. Board-level functional fault diagnosis using multikernelsupport vector machines and incremental learning[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014, 33(2):279-290.
    [4]
    肖黎, 罗嘉, 欧阳春明. 基于半监督学习方法的磨煤机故障预警[J]. 热力发电, 2019, 48(4):121-127.
    [5]
    周志华. 机器学习[M]. 北京:清华大学出版社, 2016:210-214.
    [6]
    周爱国, 王嘉立, 杨思静, 等. 基于K-means和K近邻的DPF设备故障分类算法[J]. 内燃机与配件, 2019(12):57-59.
    [7]
    董嘉真. 人工神经网络在分类问题中的应用[J]. 科技传播, 2019, 11(2):143-144.
    [8]
    ERDAMAR A, AKSAHINM F. Multi-scale classification of single-cell gel electrophoresis assay using deep learning algorithm[J]. Biomedical Signal Processing and Control, 2020, 56:1-7.
    [9]
    朱梦. 基于机器学习的中文文本分类算法的研究与实现[D]. 北京:北京邮电大学, 2019.
    [10]
    王子玲, 贾舒宜, 修建娟, 等. 基于人工神经网络的多模型目标跟踪算法[J]. 海军航空工程学院学报, 2019, 34(4):343-348, 370.
    [11]
    徐艺灵, 张鸿飞, 姜逢欣, 等. 基于STM32的可调恒温滤光片转轮盒的设计[J]. 天文研究与技术, 2018, 15(3):323-331.

Catalog

    Article views (102) PDF downloads (103) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return