Storing, processing, and transmitting state confidential information are strictly prohibited on this website
Liu Cheng, Li Fang, Gao Weiguang, Wang Wei. A Dynamic Filtering Method Based on Generalized Extension Approximation Theory[J]. Astronomical Research and Technology, 2020, 17(4): 454-462.
Citation: Liu Cheng, Li Fang, Gao Weiguang, Wang Wei. A Dynamic Filtering Method Based on Generalized Extension Approximation Theory[J]. Astronomical Research and Technology, 2020, 17(4): 454-462.

A Dynamic Filtering Method Based on Generalized Extension Approximation Theory

More Information
  • Received Date: February 02, 2020
  • Revised Date: March 23, 2020
  • Available Online: November 20, 2023
  • Based on a generalized extension approximation principle, a dynamic filtering method is proposed. The model and algorithm framework of the method are constructed, and the corresponding solution method and process are derived. By constructing and solving the generalized extension interpolation polynomial in a moving smoothing window, the time transition of system state is realized, which has better smoothing effect. The position and number of interpolation points in the smoothing window can be flexibly selected, thereby achieving higher accuracy and robustness by locking the latest observation point or the most accurate prior to observation point. The feasibility and performance of the method are simulated and verified. The results show that the method has better performance than the Kalman filter in terms of both Gaussian and non-Gaussian noise, and has development potential and application value.
  • [1]
    施浒立.天文望远镜设计理论和方法的研究和探索[D].北京:中国科学院北京天文台, 1986.
    [2]
    孔德庆,施浒立,张喜镇,等.射电望远镜指向误差的广义延拓插值修正方法[J].西安电子科技大学学报(自然科学版), 2008, 35(1):157-161.
    [3]
    YANY H, YU Q, KANG F. The application of boundary element method to 3-d solar linear force-free magnetic fields[C]//The ASP Conference Series. 1993.
    [4]
    JAMES H K, GIULIO M, NOBUYOSHI T, et al. Boundary element techniques[M]. Heisenberg:Springer Berlin Heidelberg, 1993.
    [5]
    施浒立,颜毅华,徐国华.工程科学中的广义延拓逼近法[M].北京:科学出版社, 2004.
    [6]
    田炳丽,胡超,丁风雷.基于广义延拓的Pt1000温度测量的模块设计[J].现代电子技术, 2013, 36(4):168-170.
    [7]
    王银龙.数值积分暂态稳定快速算法的研究[D].杭州:浙江大学, 2007.
    [8]
    王银龙.基于广义延拓逼近的暂态稳定分析[J].机电工程, 2007, 24(10):51-53.
    [9]
    钟山,黄美发,李军,等.基于广义延拓逼近法的凸轮轮廓反求设计[J].机械设计, 2007, 24(9):11-14.
    [10]
    彭浩坤.渐开线圆柱齿轮偏差计算及精度等级评估[D].苏州:苏州大学, 2011.
    [11]
    钟山,黄美发,钟艳如.基于广义延拓逼近法的典型机械零件曲面轮廓设计[J].机械科学与技术, 2008, 27(5):657-661.
    [12]
    钟山,黄美发,匡兵,等.基于广义延拓逼近法的复杂曲面重构研究[J].电子机械工程, 2008, 24(2):51-54, 59.
    [13]
    张安国,何平,余焕伟,等.基于广义延拓的电梯振动信号优化处理与分析[J].中国特种设备安全, 2018, 34(10):4-11.
    [14]
    吴宅莲,郑永光,施浒立.广义延拓插值法在气压数据处理中的应用[J].杭州电子科技大学学报, 2005, 25(1):75-78.
    [15]
    郑伟,钱山,汤国建.弹道导弹制导计算中扰动引力的快速赋值[J].飞行力学, 2007, 25(3):42-48.
    [16]
    郑伟.地球物理摄动因素对远程弹道导弹命中精度的影响分析及补偿方法研究[D].长沙:国防科技大学, 2007.
    [17]
    孙希延,施浒立,纪元法.卫星定位中伪距的广义延拓外推[J].电子科技, 2006(11):40-44.
    [18]
    刘成,施浒立,王兆瑞,等.一种基于接收机钟差广义延拓插值法的卫星定位增强算法[J].宇航学报, 2013, 34(2):186-192.
    [19]
    申俊飞,郑冲,陈金春.一种新插值法在卫星导航广播星历中的应用[J].数字通信世界, 2014(2):1-3.
    [20]
    苟长龙.广播星历插值和精密星历外推方法研究[D].长沙:中南大学, 2009.
    [21]
    兰孝奇,李森,段兵兵.基于广义延拓的GPS精密星历插值方法[J].测绘工程, 2010, 19(3):1-3.
    [22]
    史卫平,刘翔.广义延拓法在IGS精密星历插值中的应用[J].测绘与空间地理信息, 2014, 37(11):143-145.
    [23]
    李振昌,李仲勤,寇瑞雄.滑动式广义延拓逼近法在北斗卫星精密星历内插中的应用[J].全球定位系统, 2018, 43(5):70-76.
    [24]
    陈鹏.广义延拓插值法在GPS数据处理中的应用研究[D].长沙:中南大学, 2008.
    [25]
    焦宁,田龙华,孙秀宁,等.广义延拓插值法在IGS精密钟差插值中的应用[J].测绘与空间地理信息, 2015, 38(4):144-146.
    [26]
    原波.基于GPS三频非差相位精密单点定位算法研究及程序实现[D].北京:清华大学, 2012.
    [27]
    向荣荣,兰孝奇,易志朝.利用广义延拓法进行GPS精密钟差插值的实际效果[J].勘察科学技术, 2015(4):12-14, 30.
    [28]
    杨兆臣,刘翔.广义延拓逼近法在GPS高程拟合中的应用[J].测绘与空间地理信息, 2014, 37(12):101-103.
    [29]
    林国钻,邱斌.基于广义延拓逼近法的GPS高程拟合[J].海洋测绘, 2015, 35(5):35-37.
    [30]
    张志富,裴军,胡超,等.车载动中通信标跟踪的广义延拓逼近算法[J].西安电子科技大学学报(自然科学版), 2017, 44(4):112-117.
    [31]
    张志富,裴军,胡超.突发信号载波频偏估计的广义延拓逼近算法[J].系统工程与电子技术, 2017, 39(6):1215-1220.
    [32]
    覃新贤,姚相振,黄旭方.提高GPS接收机多普勒频移估计精度的精捕获算法[J].计算机应用与软件, 2011, 28(10):267-274.
    [33]
    唐青松,王兆瑞.基于广义延拓逼近的GPS卫星信号多普勒频移估计方法[J].现代电子技术, 2018, 41(7):24-28.
    [34]
    耿建平,衣伟,刘成,等.基于广义延拓外推的单频周跳检测与修复方法[J].天文研究与技术, 2015, 12(2):174-182.
    [35]
    原波,白征东,付春浩.一种基于多项式拟合法的新的单频周跳探测方法[J].工程勘察, 2011(12):63-66.
    [36]
    梁坤,施浒立. GPS接收机中码相位测量精化方法的研究[J].宇航学报, 2007, 28(3):571-575.
    [37]
    张杰,马冠一,李婧华,等.最大值约束的广义延拓逼近GNSS码鉴相算法[J].系统工程与电子技术, 2017, 39(4):174-720.
    [38]
    宁春林,施浒立,李圣明,等.一种构造WDOP中加权矩阵的新方法[J].宇航学报, 2009, 30(2):526-531.
    [39]
    杜晓辉,施浒立,裴军.地面移动基站增强的CAPS广义延拓差分定位方法[J].西安电子科技大学学报(自然科学版), 2013, 40(1):129-134.
    [40]
    程涛.室内组合导航定位方法研究[D].杭州:杭州电子科技大学, 2017.
    [41]
    尚俊娜,程涛,盛林,等.广义延拓插值模型在RSSI测距方法中的应用[J].传感技术学报, 2016, 29(11):1768-1772.
  • Articles Related

    [1]Chen Ying, Lu Jun, Liu Cheng, Shao Bo, Zhang Jian, Yuan Bin. Research and Assessment on Key Issues of ICAO SARPs for BeiDou Navigation Satellite System [J]. Astronomical Research and Technology, 2022, 19(5): 447-457. DOI: 10.14005/j.cnki.issn1672-7673.20220113.001
    [2]Jiang Hu, Deng Lei, Yu Jinpei. Simulation of Current BeiDou Navigation Constellation and Its Quantitative Assessment [J]. Astronomical Research and Technology, 2020, 17(2): 171-177.
    [3]Cai Fan, Chen Li. Realization of Key Technology of Dual Mode Satellite Timing Equipment [J]. Astronomical Research and Technology, 2018, 15(1): 46-51.
    [4]Xue Xiping, Zhang Hongbo, Kong Deqing. An Overview of Celestial Autonomous Navigation Technology for Deep Space Exploration [J]. Astronomical Research and Technology, 2017, 14(3): 382-391.
    [5]Zhao Danning. Study on Methods for Analyzing the Stability of Satellite Navigation Signals [J]. Astronomical Research and Technology, 2017, 14(3): 330-336.
    [6]He Ruizhu, Hu Zhengqun, Cui Junxia, Pei Jun. A Novel Method to Enhance Communication Security in the CAPS Integrated System of Navigation and Communication [J]. Astronomical Research and Technology, 2015, 12(1): 30-35.
    [7]Ji Haifu, Ma Lihua, Ai Guoxiang, Wang Meng. The New Doppler Shift-and-Range Positioning Algorithm for the Global Navigation Satellite System [J]. Astronomical Research and Technology, 2014, 11(1): 13-18.
    [8]WU Zhai-lian. The Comparison of the Position Errors Between Galileo System and Regional Augmentation Navigation System [J]. Astronomical Research and Technology, 2007, 4(2): 163-169.
    [9]JIANG Hu, YU Jin-pei, LI Guo-tong. PDOP Simulation of Galileo Navigation and Positional System with the BEIDOU Satellites [J]. Astronomical Research and Technology, 2006, 3(3): 264-270.
    [10]JIANG Hu, LI Guo-tong, YU Jin-pei. PDOP Simulation of the Galileo Navigation and Positional System [J]. Astronomical Research and Technology, 2006, 3(3): 258-263.

Catalog

    Article views (178) PDF downloads (86) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return