Citation: | Peng Rui, Xie Zhaohua, Xue Rui, Wang Zerui, Luo Dan, Huang Hongyan, Xu Yunbing, Liu Wenguang, Yi Tingfeng, Tan Can, Liu Xiaopeng, Du Leiming. The Peak Information, the Compton Dominance, the Spectral Index Diagram, and the Correlations for Fermi Blazars[J]. Astronomical Research and Technology, 2019, 16(4): 401-409. |
[1] |
FINKE J D. Compton dominance and the blazar sequence[J]. The Astrophysical Journal, 2013, 763(2):article id. 134(11pp).
|
[2] |
FAN J H, YANG J H, LIU Y, et al. The spectral energy distributions of Fermi blazars[J]. The Astrophysical Journal Supplement Series, 2016, 226(2):article id. 20(18pp).
|
[3] |
FAN X L, BAI J M, MAO J R. What determines the observational differences of blazars?[J]. Research in Astronomy and Astrophysics, 2016, 16(11):61-70.
|
[4] |
GHISELLINI G. Extreme blazars[J]. Astroparticle Physics, 1999, 48(5):375-380.
|
[5] |
LYU F, LIANG E W, LIANG Y F, et al. Distributions of gamma-ray bursts and blazars in the L p-E p-plane and possible implications for their radiation physics[J]. The Astrophysical Journal, 2014, 793:article id. 36(8pp).
|
[6] |
YAN D H, ZHANG L, ZHANG S N. Formation of very hard electron and gamma-ray spectra of flat spectrum radio quasar in fast-cooling regime[J]. Monthly Notices of the Royal Astronomical Society, 2015, 459(3):423-426.
|
[7] |
DERMER C D, YAN D H, ZHANG L, et al. Near-equipartition jets with log-parabola electron energy distribution and the blazar spectral-index diagrams[J]. The Astrophysical Journal, 2015, 809(2):article id. 174(13pp).
|
[8] |
余莲, 张雄, 张皓晶, 等. 类星体长周期光变分析方法的研究[J]. 天文研究与技术, 2019, 16(2):139-150.
|
[9] |
任国伟, 张雄, 张皓晶, 等. Fermi耀变体的辐射特性和演化研究[J]. 天文研究与技术, 2019, 16(3):253-261.
|
[10] |
DING N, ZHANG X, XIONG D R, et al. The physical properties of Fermi TeV BL Lac objects' jets[J]. Monthly Notices of the Royal Astronomical Society, 2017, 464(1):599-612.
|
[11] |
XUE R, LUO D, DU L M, et al. Curvature of the spectral energy distribution, the inverse Compton component and the jet in Fermi 2LAC blazars[J]. Monthly Notices of the Royal Astronomical Society, 2016, 463(3):2038-3050.
|
[12] |
NALEWAJKO K, GUPTA M. The sequence of Compton dominance in blazars based on data from WISE and\r, Fermi\r, -LAT[J]. Astronomy & Astrophysics, 2017, 606:article id. A44(8pp).
|
[13] |
GHISELLINI G, TAVECCHIO F, FOSCHINI L, et al. General physical properties of bright Fermi blazars[J]. Monthly Notices of the Royal Astronomical Society, 2010, 402(1):497-518.
|
[14] |
BOULA S, KAZANAS D, MASTICHIADIS A. Accretion disk MHD winds and blazar classification[J]. Monthly Notices of the Royal Astronomical Society, 2018, 482:article id. L80(5pp).
|
[15] |
RUEDA-BECERRIL J M, MIMICA P, ALOY M A. The influence of the magnetic field on the spectral properties of blazars[J]. Monthly Notices of the Royal Astronomical Society, 2014, 438(2):1856-1869.
|
[16] |
DERMER C D. The extragalactic γ ray background[C]//Proceedings of AIP Conference. 2007.
|
[17] |
BÖTTCHER M, REIMER A. Modeling the multiwavelengthspectra and variability of BL Lacertae in 2000[J].The Astrophysical Journal, 2004, 609(2):576-588.
|
[18] |
YANG J P, WANG J C. Mechanism of very high energy radiation in BL Lacertae object 3C 66A[J]. Astronomy & Astrophysics, 2009, 511(1):197-277.
|
[19] |
ACHTERBERG A, GALLANT Y A, KIRK J G, et al. Particle acceleration by ultrarelativistic shocks:theory and simulations[J]. Monthly Notices of the Royal Astronomical Society, 2001, 328(2):393-408.
|
[20] |
NIEPPOLA E, VALTAOJA E, TORNIKOSKI M, et al. Blazar sequence-an artefact of Doppler boosting[J]. Astronomy & Astrophysics, 2009, 488(3):867-872.
|
[21] |
WU Z, JIANG D R, GU M, et al. VLBI observations of seven BL Lacertae objects, from RGB sample[J]. Astronomy and Astrophysics, 2007, 466(1):63-73.
|
[22] |
LISTER M L, HOMAN D C, HOVATTA T, et al. MOJAVE. XVⅡ. jetkinematics and parent population properties of relativistically beamed radio-loud blazars[J]. The Astrophysical Journal, 2019, 874:43.
|
[23] |
VALTAOJA E, LINDFORS E, SALORANTA P M, et al. Hydrodynamics of small-scale jets:observational aspects[C]//Proceedings of ASP Conference Series. 2008.
|
[24] |
ARSHAKIAN T G, CHAVUSHYAN V H, ROS E, et al. Radio-optical scrutiny of the central engine in compact AGN[J]. Memorie della Società Astronomica Italiana, 2004, 76:35-38.
|
[25] |
CHEN L, BAI J M. Implications on the blazar sequence and inverse Compton models from Fermi bright blazars[J]. The Astrophysical Journal, 2011, 735(2):395-402.
|
[26] |
YAN D, ZHANG L, ZHANG S N. Formation of very hard electron and gamma-ray spectra of flat spectrum radio quasar in fast-cooling regime[J]. Monthly Notices of the Royal Astronomical Society, 2015, 459(3):423-426.
|
[27] |
QIN L H, WANG J C, YANG C Y, et al. Using the Markov Chain Monte Carlo method to study the physical properties of GeV-TeV BL Lac objects[J]. Publications of the Astronomical Society of Japan, 2018, 70(1):article id. 5.
|
[28] |
ABDO A A, ACKERMANN M, AJELLO M, et al. The first catalog of active galactic nuclei detected by the Fermi Large Area Telescope[J]. The Astrophysical Journal, 2010, 715(1):429-457.
|
[29] |
ACKERMANN M, AJELLO M, ALLAFORT A, et al. The second catalog of active galactic nuclei detected by the Fermi Large Area Telescope[J]. The Astrophysical Journal, 2011, 743(2):article id. 171(37pp).
|
[30] |
ACKERMANN M, AJELLO M, ATWOOD W B, et al. The third catalog of active galactic nuclei detected by the Fermi Large Area Telescope[J]. The Astrophysical Journal, 2015, 80(1):article id. 14(34pp).
|
[1] | Yi Letian, Xu Qian, Li Lin, Wang Hui. Study on Non-uniform Temperature Field and Thermal Deformation of Antenna Alidade [J]. Astronomical Research and Technology, 2022, 19(5): 438-446. DOI: 10.14005/j.cnki.issn1672-7673.20220729.001 |
[2] | Liu Xiaopeng, Wang Zerui, Du Leiming, Xie Zhaohua, Xu Yunbing, Deng Xuejiao, Li Haifeng. Study on the Origin of Soft Photons for the Inverse Compton Mechanism in Flat-spectrum Radio Quasars [J]. Astronomical Research and Technology, 2021, 18(4): 445-455. DOI: 10.14005/j.cnki.issn1672-7673.20210129.001 |
[3] | Li Yang, Ye Qian, Jin Huiliang. Thermal Error Compensation Based on QTT Actuator [J]. Astronomical Research and Technology, 2021, 18(2): 240-247. DOI: 10.14005/j.cnki.issn1672-7673.20200729.001 |
[4] | Huang Shanjie, Zhong Xiaoyu, Lin Jun, Jin Zhenyu, Xu Fangyu. Study on Design Scheme of Thermal Protection of Probe for in situ Measurements of Solar Eruption [J]. Astronomical Research and Technology, 2021, 18(1): 87-100. DOI: 10.14005/j.cnki.issn1672-7673.20200515.001 |
[5] | Zhong Wei, Liu Wenguang, Zheng Yonggang. GeV-TeV Energy Spectral Analysis of BL Lac objects [J]. Astronomical Research and Technology, 2018, 15(1): 1-9. |
[6] | ZHAO Lian-yuan, XU Jun. The Thermal and Heat Leak Analyses of Dewar [J]. Astronomical Research and Technology, 2008, 5(3): 319-322. |
[7] | Ji Shuchen. Twelve Radio Bursts and Their Radiation Mechanisms [J]. Publications of the Yunnan Observatory, 1998, 0(3): 22-27. |
[8] | Jiang Suyun. The Mechanism Investigation on the Superwind and Thermal Pulse in the AGB Star [J]. Publications of the Yunnan Observatory, 1997, 0(1): 85-86. |
[9] | Han Zhanwen. The Complete Linearization Method for Computing Non-LTE Model Stellar Atmosphere [J]. Publications of the Yunnan Observatory, 1989, 0(1): 45-50. |
[10] | Han Zhanwen. Computational Methods for the non-LTE Atmospheric Model [J]. Publications of the Yunnan Observatory, 1988, 0(2): 29-39. |