Storing, processing, and transmitting state confidential information are strictly prohibited on this website
Yang Hang, Dong Liang, He Lesheng. Research on Observable Frequency Band Analysis of Solar Radio Current in L-band Based on Simple Thresholding and CUSUM Joint Algorithm[J]. Astronomical Research and Technology, 2023, 20(1): 31-40. DOI: 10.14005/j.cnki.issn1672-7673.20220920.003
Citation: Yang Hang, Dong Liang, He Lesheng. Research on Observable Frequency Band Analysis of Solar Radio Current in L-band Based on Simple Thresholding and CUSUM Joint Algorithm[J]. Astronomical Research and Technology, 2023, 20(1): 31-40. DOI: 10.14005/j.cnki.issn1672-7673.20220920.003

Research on Observable Frequency Band Analysis of Solar Radio Current in L-band Based on Simple Thresholding and CUSUM Joint Algorithm

More Information
  • Received Date: July 19, 2022
  • Revised Date: August 15, 2022
  • Available Online: November 20, 2023
  • L-band solar radio burst is a potential influencing factor of navigation system instability, through the L-band precision solar current volume monitoring events of solar burst interfering navigation can be found in real time, for this reason Yunnan Astronomical Observatory headquarters intend to establish an L-band multi-frequency point solar radio monitoring system. An effective assessment of the radio environment is essential for the stable access to observational data from the monitoring system. This paper introduces the radio monitoring readiness study of the monitoring platform, and conducts a 100-hour test of the L-band radio environment in the Fenghuangshan area of the Headquarters of the Yunnan Astronomical Observatory. In this paper, an algorithm based on the improved threshold of Simple Thresholding algorithm and CUSUM algorithm is proposed, and 7 radio passbands with less 5 MHz radio interference between the Beidou B1, B2, B3 frequency points, GPS L1 and L2 frequency points are selected, namely 1 551-1 555 MHz, 1 596-1 600 MHz, 1 161-1 165 MHz, 1 221-1 225 MHz, respectively. 1 246-1 250 MHz, 1 291-1 295 MHz, 1 231-1 235 MHz, its cleanliness rates are 98.329%, 98.301%, 98.315%, 98.335%, 98.224%, 97.650%, 98.260%, all of which meet the needs of solar observation. It provides a basis for the next step of receiver design and signal processing.
  • [1]
    宋丽敏, 张军, 杨志良, 等. 对地日冕物质抛射研究[J]. 天文学进展, 2002, 20(1):33-44.

    SONG L M, ZHANG J, YANG Z L, et al. Earth-directed coronal mass ejection[J]. Progress in Astronomy, 2002, 20(1):33-44.
    [2]
    王林萍, 王华宁, 黄鑫. 日冕物质抛射的偏转特性研究[J]. 天文研究与技术, 2016, 13(2):143-149.

    WANG L P, WANG H N, HUANG X. A study on deflection characteristics of coronal mass ejection[J]. Astronomical Research & Technology, 2016, 13(2):143-149.
    [3]
    WANG J X, ZHOU G P, WEN Y Y, et al. Transequatorial filament eruption and its link to a coronal mass ejection[J]. Chinese Journal of Astronomy and Astrophysics, 2006, 6(2):247-259.
    [4]
    周桂萍, 曹卓良, 汪景琇. 日冕物质抛射和太阳表面磁活动的关系[J]. 天文学进展, 2003, 21(1):41-54.

    ZHOU G P, CAO Z L, WANG J X. Correlation between coronal mass ejections and solar surface magnetic activities[J]. Progress in Astronomy, 2003, 21(1):41-54.
    [5]
    邵承文. 日冕物质抛射(CME)的射电研究[D]. 昆明:中国科学院云南天文台, 2005.

    SHAO C W. Radio research of Coronal Mass Ejection (CME)[D]. Kunming:Yunnan Observatories, Chinese Academy of Sciences, 2005.
    [6]
    戴宏. AGN的多波段性质与演化研究[D]. 昆明:中国科学院云南天文台, 2006. DAI H. Research on characteristic of multi-band spectral energy distribution and evolution of AGN[D]. Kunming:Yunnan Observatories, Chinese Academy of Sciences, 2006.
    [7]
    李富婷, 张雄, 张皓晶, 等. AGN吸积盘辐射区半径的多方法研究[J]. 天文研究与技术, 2019, 16(4):381-389.

    LI F T, ZHANG X, ZHANG H J, et al. Multi-method study on radius of radiation zone of AGN accretion disk[J]. Astronomical Research & Technology, 2019, 16(4):381-389.
    [8]
    KLOBUCHAR J A, KUNCHES J M, VAN DIERENDONCK A J. Eye on the ionosphere:potential solar radio burst effects on GPS signal to noise[J]. GPS Solutions, 1999, 3(2):69-71.
    [9]
    BALA B, LANZEROTTI L J, GARY D E, et al. Noise in wireless systems produced by solar radio bursts[J]. Radio Science, 2002, 37(2):1-7.
    [10]
    CHEN Z Y, GAO Y, LIU Z Z. Evaluation of solar radio bursts'effect on GPS receiver signal tracking within International GPS Service network[J]. Radio Science, 2005, 40:RS3012.
    [11]
    董亮. 太阳射电爆发对无线通信影响、评估及预警平台建立关键技术的研究[D]. 昆明:中国科学院云南天文台, 2016.

    DONG L. Research on the impact of solar radio bursts on wireless communication, evaluation and establishment of key technologies for early warning platforms[D]. Kunming:Yunnan Observatories, Chinese Academy of Sciences, 2016.
    [12]
    董亮, 闫小娟, 黄文耿, 等. 太阳射电爆发对不同波段无线电信号影响分析[C]//全国第三十五届气象年会文集. 2018. DONG L, YAN X J, HUANG W G, et al. Analysis on the impact of solar radio bursts on radio signals in different wavelength bands[C]//Proceedings of the 35th National Meteorological Annual Conference. 2018.
    [13]
    董亮, 闫小娟, 黄文耿, 等. 2015年11月4日太阳射电爆发干扰导航信号事件中的X射线先兆分析[J]. 天文研究与技术, 2021, 18(3):294-300.

    DONG L, YAN X J, HUANG W G, et al. X-ray aura analysis in solar radio burst interference navigation signal event on November 4, 2015[J]. Astronomical Research & Technology, 2021, 18(3):294-300.
    [14]
    李升阳, 董亮, 乐林株. 一种基于LabVIEW和第三方驱动程序的无线电环境自动测试平台[J]. 电子测试, 2017(13):75-76.

    LI S Y, DONG L, YUE L Z. A sort of automatic radio environment testing platform based on LabVIEW and a 3rd party driver[J]. Electronic Test, 2017(13):75-76.
    [15]
    袁惠仁. 小型天线增益的射电天文测量[J]. 无线电工程, 1992, 22(4):50-53.

    YUAN H R. Radio astronomical measurements of the gain for a small antenna[J]. Radio Engineering, 1992, 22(4):50-53.
    [16]
    袁惠仁. 射电天文测量微波天线增益的测量技术[J]. 云南天文台台刊, 1995(2):26-35.

    YUAN H R. Measurement technique for the measurement of microwave antenna gain by means of radioastronomical method[J]. Publications of Yunnan Observatory, 1995(2):26-35.
    [17]
    李剑, 宋文明, 崔恒乐, 等. 北斗三号与GPS组合实时动态精密单点定位精度分析[J]. 工程勘察, 2022, 50(9):66-71.

    LI J, SONG W M, CUI H L, et al. Real time dynamic precise point positioning based on BeiDou-3 and GPS[J]. Engineering survey, 2022, 50(9):66-71.
    [18]
    傅圣友, 李圣明, 王兆瑞. 基于CAPS, BDS和GPS的组合卫星定位精度分析[J]. 天文研究与技术, 2018, 15(4):397-403.

    FU S Y, LI S M, WANG Z R. Analysis of combined positioning accuracy basedon CAPS, BDS and GPS[J]. Astronomical Research & Technology, 2018, 15(4):397-403.
    [19]
    李佳威, 李芳, 何瑞珠. 利用GPS测速估算接收机载体运动方位角[J]. 天文研究与技术, 2017, 14(1):45-51.

    LI J W, LI F, HE R Z. Azimuth estimation of a moving receiver by GPS speed measurement[J]. Astronomical Research & Technology, 2017, 14(1):45-51.
    [20]
    卢伟俊, 万庆涛, 范江涛, 等. 北斗/GPS双频静态伪距单点定位结果对比分析[J]. 天文研究与技术, 2016, 13(4):433-440.

    LU W J, WAN Q T, FAN J T, et al. A comparative study of static pseudo range ingle point positioning by double frequency between BDS and GPS[J]. Astronomical Research & Technology, 2016, 13(4):433-440.
    [21]
    BAAN W A, FRIDMAN P A, MILLENAAR R P. Radio frequency interference mitigation at the Westerbork synthesis radio telescope:algorithms, test observations, and system implementation[J]. The Astronomical Journal, 2004, 128(2):933-949.
    [22]
    OFFRINGA A R, DE BRUYN A G, BIEHL M, et al. A LOFAR RFI detection pipeline and its first results[J]. Monthly Notices of the Royal Astronomical Society, 2010, 405(1):107-154.
    [23]
    OFFRINGA A R, DE BRUYN A G, BIEHL M, et al. Post-correlation radio frequency interference classification methods[J]. Monthly Notices of the Royal Astronomical Society, 2010, 405(1):155-167.
    [24]
    FRIDMAN P A, BAAN W A. Statistically stable estimates of variance in radioastronomical observations as tools for RFI mitigation[J]. The Astronomical Journal, 2008, 135(5):4-10.

Catalog

    Article views (6) PDF downloads (29) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return