Citation: | Zhang Xu, Zhang Xiong. An Analysis of Statistical Correlations between Black Hole Spin Values and Radio-Loudness Indices in Radio Loud AGN[J]. Astronomical Research and Technology, 2015, 12(4): 394-402. |
[1] |
Hughes A H, Blandford R D. Black hole mass and spin coevolution by mergers [J]. The Astrophysical Journal Letters, 2003, 585(2): L101-L104.
|
[2] |
Volonteri M, Rees M J. Rapid growth of high-redshift black holes [J]. The Astrophysical Journal, 2005, 633(2): 624-629.
|
[3] |
King A R, Pringle J E. Fuelling active galactic nuclei[J]. Monthly Notices of the Royal Astronomical Society, 2007, 385(3): 1621-1627.
|
[4] |
Volonteri M, Sikora M, Lasota J P. Black hole spin and galactic morphology[J]. The Astrophysical Journal, 2007, 667(2): 704-713.
|
[5] |
Berti E, Volonteri M. Cosmological black hole spin evolution by mergers and accretion[J]. The Astrophysical Journal, 2008, 684(2): 822-828.
|
[6] |
Zhang S N, Cui W, Chen W, et al. Black hole spin in X-ray binaries: observational consequences[J]. The Astrophysical Journal, 1997, 482(2): L155-L158.
|
[7] |
McClintock J E, Narayan R, Steiner J F. Black hole spin via continuum fitting and the role of spin in powering transient jets[J]. Space Science Reviews, 2013(1): 256-258.
|
[8] |
Steiner J F, McClintock J E. Measuring black-hole spin and modeling the jet dynamics in microquasar XTE J1550-564[J]. Monthly Notices of the Royal Astronomical Society, 2011, 416 (1): 941-946.
|
[9] |
Meier D L. Simulations of relativistic jet formation[J]. The Astrophysical Journal, 1999, 35(5): 522-753.
|
[10] |
Blandford R D. Spectrum of a radio pulse from an exploding black hole[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(2): 489-498.
|
[11] |
Schmoll S, Miller J M, Volonteri M, et al. Constraining the spin of the black hole in Fairall 9 with Suzaku[J]. The Astrophysical Journal, 2009, 703(2): 2171-2176.
|
[12] |
Daly R A. Estimates of black hole spin properties of 55 sources[J]. Monthly Notices of the Royal Astronomical Society, 2011, 414(2): 1253-1262.
|
[13] |
Reynolds C S, Garofalo D, Begelman M C, et al. Trapping of magnetic flux by the plunge region of a black hole accretion disk[J]. The Astrophysical Journal, 2006, 651(2): 651-1023.
|
[14] |
Tatum M M, Turner T J, Miller L, et al. The global implications of the hard X-ray excess in type 1 AGN[J]. The Astrophysical Journal, 2012, 762(2): 80.
|
[15] |
Tchekhovskoy A, Narayan R, McKinney J, et al. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole[J]. Monthly Notices of the Royal Astronomical Society, 2011, 418(1): L79-L83.
|
[16] |
Thorne R M, Shprits Y Y, Meredith N P, et al. Refilling of the slot region between the inner and outer electron radiation belts during geomagnetic storms [J]. Journal of Geophysical Research: Space Physics, 2007, 112(A6): 1-11.
|
[17] |
Nardini E, Fabian A C, Walton D J, et al. Investigating the reflection contribution to the X-ray emission of Ton S180[J]. Monthly Notices of the Royal Astronomical Society, 2012, 423(4): 3299-3307.
|
[18] |
Zoghbi A, Fabian A C, Uttley P, et al. Broad iron L line and X-ray reverberation in 1H0707-495 [J]. Monthly Notices of the Royal Astronomical Society, 2010, 401(1): 2419-2432.
|
[19] |
Fender R P, Belloni T M, Gallo E, et al. Towards a unified model for black hole X-ray binary jets[J]. Monthly Notices of the Royal Astronomical Society, 2004, 355(4): 1105-1118.
|
[20] |
Daly R A. Bounds on black hole spins[J]. The Astrophysical Journal Letter, 2009, 696(1): 691-L72.
|
[21] |
Narayan R, McClintock J E. Observational evidence for a correlation between jet power and black hole spin [J]. Monthly Notices of the Royal Astronomical Society, 2011, 419(1): L69-L73.
|
[22] |
Komossa S. Observational evidence for supermassive black hole binaries[C]//AIP Conference Proceedings. 2013.
|
[23] |
Dermer C D, Finke J D, Menon G, et al. Black-hole engine kinematics, flares from PKS 2155-304, and multiwavelength blazar analysis[J]. The Astrophysical Journal, 2008, 10(1): 810-1055.
|
[24] |
Rees M J. Black hole models for active galactic nuclei[J]. Annual Review of Astronomy and Astrophysics, 1984, 22(1): 471-506.
|
[25] |
King A R. Black hole outflows[J]. Monthly Notices of the Royal Astronomical Society, 2010, 402(1): 1516-1522.
|
[26] |
Emmering R T, Blandford R D, Shlosman I, et al. Magnetic acceleration of broad emission-line clouds in active galactic nuclei[J]. The Astrophysical Journal, 1992, 385: 460-477.
|
[27] |
Punsly B, Coroniti F V. Relativistic winds from pulsar and black hole magnetospheres[J]. The Astrophysical Journal, 1990, 350(2): 518-535.
|
[28] |
Daly R A, Guerra E J. High-redshift radio galaxies as a cosmological tool exploration of a key assumption and comparison with supernova results[C]//AIP Conference Proceedings. 2002.
|
[29] |
Allen S W, Dunn R J H, Fabian A C, et al. The relation between accretion rate and jet power in X-ray luminous elliptical galaxies[J]. Monthly Notices of the Royal Astronomical Society, 2006, 372(1): 21-30.
|
[30] |
Merloni A, Heinz S. Measuring the kinetic power of active galactic nuclei in the radio mode[J]. Monthly Notices of the Royal Astronomical Society, 2007, 381(2): 589-601.
|
[31] |
Brotherton M S, Wills B J, Steidel C C, et al. Statistics of QSO broad emission-line profiles. 2: the C IV wavelength 1549, C III) wavelength 1909, and MG II wavelength 2798 lines[J]. The Astrophysical Journal, 1994, 423: 131-142.
|
[32] |
Brotherton M S. The profiles of H beta and [O iii] lambda 5007 in radio-loud quasars[J]. The Astrophysical Journal Supplement Series, 1996, 102(1): 1-27.
|
[33] |
Corbin M R. The emission-line properties of steep radio spectrum quasars [J]. The Astrophysical Journal, 1991, 375(2): 503-516.
|
[34] |
Corbin M R. The emission-line properties of low-redshift quasi-stellar objects. II. the relation to radio type [J]. The Astrophysical Journal Supplement Series, 1997, 113(2): 245-267.
|
[35] |
Gu M F, Cao X W, Jiang D R, et al. On the masses of black holes in radio-loud quasars[J]. Monthly Notices of the Royal Astronomical Society, 2001, 327(4): 1111-1115.
|
[36] |
Gu Q S, Huang J H, de Diego J A, et al. The nuclear starburst activity in the Seyfert 2 galaxy NGC 7679[J]. Astronomy and Astrophysics, 2001, 374(3): 932-935.
|
[37] |
Garrington S T, Conway R G, Leahy J P, et al. Asymmetric depolarization in double radio sources with one-sided jets[J]. Monthly Notices of the Royal Astronomical Society, 1991, 250(1): 171-197.
|
[38] |
Afanas'ev V L, Dodonov S N, Moiseev A V, et al. Radio and optical spectra of objects from three complete samples of radio sources[J]. Astronomy Reports, 2006, 50(4): 255-272.
|
[39] |
Marziani P, Sulentic J W, Dultzin H D, et al. Comparative analysis of the high-and low-ionization lines in the broad-line region of active galactic nuclei[J]. Monthly Notices of the Royal Astronomical Society, 1996, 104(1): 37-70.
|
[40] |
McIntosh D H, Rix H W, Rieke M J, et al. Redshifted and blueshifted broad lines in luminous quasars[J]. The Astrophysical Journal Letters, 1999, 517(2): L73-L76.
|
[41] |
Wills B J, Browne IWA. Relativistic beaming and quasar emission lines[J]. The Astrophysical Journal, 1986, 302(1): 56-63.
|
[1] | Zhang Shun, Yi Tingfeng, Lu He, Chen Yutong, Wang Liang, Wang Na, Pu Zhiyuan, Dong Liang. Correlation Study of TeV Blazars in Optical Band and γ-ray Band [J]. Astronomical Techniques and Instruments, 2023, 20(6): 510-517. DOI: 10.14005/j.cnki.issn1672-7673.20230913.001 |
[2] | Wu Yuecheng, Gong Yunlu, Feng Taotao. The Medium and Long Period Broad Band Spectral Index Characteristics of Flat Spectrum Radio Quasar 3C 454.3 [J]. Astronomical Techniques and Instruments, 2023, 20(3): 204-210. DOI: 10.14005/j.cnki.issn1672-7673.20230118.001 |
[3] | Pan Zuheng, Peng Qingyu, Lu Xing, Chen Xiao, Li Dan. Searching Moving Objects by Image Correlation [J]. Astronomical Techniques and Instruments, 2023, 20(1): 41-49. DOI: 10.14005/j.cnki.issn1672-7673.20221024.001 |
[4] | Pan Caijuan, Lin Yingru, Lu Weijian, Yang Jie. The Test of the Hardiness-duration Correlation in the Two Classes of Gamma-ray Bursts [J]. Astronomical Research and Technology, 2022, 19(6): 535-539. DOI: 10.14005/j.cnki.issn1672-7673.20220920.001 |
[5] | Ma Kaixuan, Zhang Haojing, Yan Peilin, Lu Lin, Zhang Huan. The Correlations of Multi-wave band Luminosity and Jet Power in Fermi Blazars [J]. Astronomical Research and Technology, 2021, 18(4): 437-444. DOI: 10.14005/j.cnki.issn1672-7673.20210112.002 |
[6] | Yan Peilin, Zhang Haojing, Ma Kaixuan, Lu Lin. Discussion on the Correlation between the Brightness Temperature of the Blazars and the Jet Energy of the Black Hole [J]. Astronomical Research and Technology, 2021, 18(2): 153-161. DOI: 10.14005/j.cnki.issn1672-7673.20200722.003 |
[7] | Zhang Xu, Zhang Xiong. The Relation between the Accretion Rate and the Jet Power [J]. Astronomical Research and Technology, 2016, 13(1): 24-30. |
[8] | Zhang Xu, Zhang Xiong. A Study of Correlations between Redshifts and Spin Energies of Black Holes in AGN [J]. Astronomical Research and Technology, 2015, 12(3): 253-261. |
[9] | ZHAN La-sheng, YUAN Wen-liang, MIN Qian, LI Cui-yun. Correlation between the Cycles of Solar Activities and the Flood Occurrences in the Poyang Lake [J]. Astronomical Research and Technology, 2009, 6(3): 175-180. |
[10] | TANG ling, ZHANG Hao-jing, ZHENG Yong-gang, PENG Zhao-yang, ZHANG xiong. A Study of the Broad-band Spectral Indeices of Gamma-ray-loud Blazars [J]. Astronomical Research and Technology, 2008, 5(4): 337-348. |