Storing, processing, and transmitting state confidential information are strictly prohibited on this website
Zhang Xu, Zhang Xiong. An Analysis of Statistical Correlations between Black Hole Spin Values and Radio-Loudness Indices in Radio Loud AGN[J]. Astronomical Research and Technology, 2015, 12(4): 394-402.
Citation: Zhang Xu, Zhang Xiong. An Analysis of Statistical Correlations between Black Hole Spin Values and Radio-Loudness Indices in Radio Loud AGN[J]. Astronomical Research and Technology, 2015, 12(4): 394-402.

An Analysis of Statistical Correlations between Black Hole Spin Values and Radio-Loudness Indices in Radio Loud AGN

More Information
  • Received Date: December 01, 2014
  • Revised Date: December 27, 2014
  • Published Date: October 14, 2015
  • We have collected a sample of 69 radio-loud quasars from various references.The sample includes 37 SSRQs (with α>0.5) and 32 FSRQs (with α<0.5) with redshifts ranging from about zero to about two.We have carried out an analysis of statistical correlations between black hole spin values and radio-loudness indices for the sample.In the analysis we consider three cases of the spin values.The three cases correspond to three different assumptions about the magnetic field strengths around the black holes.Our conclusions are as follows.(1) In SSRQs their black hole spin values are strongly correlated with their radio-loudness indices;(2) The correlation in SSRQs is not caused by relativistic beaming;(3) There is no indication of a strong correlation between supermassive black hole mass values and spin values for FSRQs;(4) The correlations between black hole spin values and radio-loudness indices may be different for different types of radio-loud quasars.Our results are consistent with models of radio-loud quasars of other authors.
  • [1]
    Hughes A H, Blandford R D. Black hole mass and spin coevolution by mergers [J]. The Astrophysical Journal Letters, 2003, 585(2): L101-L104.
    [2]
    Volonteri M, Rees M J. Rapid growth of high-redshift black holes [J]. The Astrophysical Journal, 2005, 633(2): 624-629.
    [3]
    King A R, Pringle J E. Fuelling active galactic nuclei[J]. Monthly Notices of the Royal Astronomical Society, 2007, 385(3): 1621-1627.
    [4]
    Volonteri M, Sikora M, Lasota J P. Black hole spin and galactic morphology[J]. The Astrophysical Journal, 2007, 667(2): 704-713.
    [5]
    Berti E, Volonteri M. Cosmological black hole spin evolution by mergers and accretion[J]. The Astrophysical Journal, 2008, 684(2): 822-828.
    [6]
    Zhang S N, Cui W, Chen W, et al. Black hole spin in X-ray binaries: observational consequences[J]. The Astrophysical Journal, 1997, 482(2): L155-L158.
    [7]
    McClintock J E, Narayan R, Steiner J F. Black hole spin via continuum fitting and the role of spin in powering transient jets[J]. Space Science Reviews, 2013(1): 256-258.
    [8]
    Steiner J F, McClintock J E. Measuring black-hole spin and modeling the jet dynamics in microquasar XTE J1550-564[J]. Monthly Notices of the Royal Astronomical Society, 2011, 416 (1): 941-946.
    [9]
    Meier D L. Simulations of relativistic jet formation[J]. The Astrophysical Journal, 1999, 35(5): 522-753.
    [10]
    Blandford R D. Spectrum of a radio pulse from an exploding black hole[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(2): 489-498.
    [11]
    Schmoll S, Miller J M, Volonteri M, et al. Constraining the spin of the black hole in Fairall 9 with Suzaku[J]. The Astrophysical Journal, 2009, 703(2): 2171-2176.
    [12]
    Daly R A. Estimates of black hole spin properties of 55 sources[J]. Monthly Notices of the Royal Astronomical Society, 2011, 414(2): 1253-1262.
    [13]
    Reynolds C S, Garofalo D, Begelman M C, et al. Trapping of magnetic flux by the plunge region of a black hole accretion disk[J]. The Astrophysical Journal, 2006, 651(2): 651-1023.
    [14]
    Tatum M M, Turner T J, Miller L, et al. The global implications of the hard X-ray excess in type 1 AGN[J]. The Astrophysical Journal, 2012, 762(2): 80.
    [15]
    Tchekhovskoy A, Narayan R, McKinney J, et al. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole[J]. Monthly Notices of the Royal Astronomical Society, 2011, 418(1): L79-L83.
    [16]
    Thorne R M, Shprits Y Y, Meredith N P, et al. Refilling of the slot region between the inner and outer electron radiation belts during geomagnetic storms [J]. Journal of Geophysical Research: Space Physics, 2007, 112(A6): 1-11.
    [17]
    Nardini E, Fabian A C, Walton D J, et al. Investigating the reflection contribution to the X-ray emission of Ton S180[J]. Monthly Notices of the Royal Astronomical Society, 2012, 423(4): 3299-3307.
    [18]
    Zoghbi A, Fabian A C, Uttley P, et al. Broad iron L line and X-ray reverberation in 1H0707-495 [J]. Monthly Notices of the Royal Astronomical Society, 2010, 401(1): 2419-2432.
    [19]
    Fender R P, Belloni T M, Gallo E, et al. Towards a unified model for black hole X-ray binary jets[J]. Monthly Notices of the Royal Astronomical Society, 2004, 355(4): 1105-1118.
    [20]
    Daly R A. Bounds on black hole spins[J]. The Astrophysical Journal Letter, 2009, 696(1): 691-L72.
    [21]
    Narayan R, McClintock J E. Observational evidence for a correlation between jet power and black hole spin [J]. Monthly Notices of the Royal Astronomical Society, 2011, 419(1): L69-L73.
    [22]
    Komossa S. Observational evidence for supermassive black hole binaries[C]//AIP Conference Proceedings. 2013.
    [23]
    Dermer C D, Finke J D, Menon G, et al. Black-hole engine kinematics, flares from PKS 2155-304, and multiwavelength blazar analysis[J]. The Astrophysical Journal, 2008, 10(1): 810-1055.
    [24]
    Rees M J. Black hole models for active galactic nuclei[J]. Annual Review of Astronomy and Astrophysics, 1984, 22(1): 471-506.
    [25]
    King A R. Black hole outflows[J]. Monthly Notices of the Royal Astronomical Society, 2010, 402(1): 1516-1522.
    [26]
    Emmering R T, Blandford R D, Shlosman I, et al. Magnetic acceleration of broad emission-line clouds in active galactic nuclei[J]. The Astrophysical Journal, 1992, 385: 460-477.
    [27]
    Punsly B, Coroniti F V. Relativistic winds from pulsar and black hole magnetospheres[J]. The Astrophysical Journal, 1990, 350(2): 518-535.
    [28]
    Daly R A, Guerra E J. High-redshift radio galaxies as a cosmological tool exploration of a key assumption and comparison with supernova results[C]//AIP Conference Proceedings. 2002.
    [29]
    Allen S W, Dunn R J H, Fabian A C, et al. The relation between accretion rate and jet power in X-ray luminous elliptical galaxies[J]. Monthly Notices of the Royal Astronomical Society, 2006, 372(1): 21-30.
    [30]
    Merloni A, Heinz S. Measuring the kinetic power of active galactic nuclei in the radio mode[J]. Monthly Notices of the Royal Astronomical Society, 2007, 381(2): 589-601.
    [31]
    Brotherton M S, Wills B J, Steidel C C, et al. Statistics of QSO broad emission-line profiles. 2: the C IV wavelength 1549, C III) wavelength 1909, and MG II wavelength 2798 lines[J]. The Astrophysical Journal, 1994, 423: 131-142.
    [32]
    Brotherton M S. The profiles of H beta and [O iii] lambda 5007 in radio-loud quasars[J]. The Astrophysical Journal Supplement Series, 1996, 102(1): 1-27.
    [33]
    Corbin M R. The emission-line properties of steep radio spectrum quasars [J]. The Astrophysical Journal, 1991, 375(2): 503-516.
    [34]
    Corbin M R. The emission-line properties of low-redshift quasi-stellar objects. II. the relation to radio type [J]. The Astrophysical Journal Supplement Series, 1997, 113(2): 245-267.
    [35]
    Gu M F, Cao X W, Jiang D R, et al. On the masses of black holes in radio-loud quasars[J]. Monthly Notices of the Royal Astronomical Society, 2001, 327(4): 1111-1115.
    [36]
    Gu Q S, Huang J H, de Diego J A, et al. The nuclear starburst activity in the Seyfert 2 galaxy NGC 7679[J]. Astronomy and Astrophysics, 2001, 374(3): 932-935.
    [37]
    Garrington S T, Conway R G, Leahy J P, et al. Asymmetric depolarization in double radio sources with one-sided jets[J]. Monthly Notices of the Royal Astronomical Society, 1991, 250(1): 171-197.
    [38]
    Afanas'ev V L, Dodonov S N, Moiseev A V, et al. Radio and optical spectra of objects from three complete samples of radio sources[J]. Astronomy Reports, 2006, 50(4): 255-272.
    [39]
    Marziani P, Sulentic J W, Dultzin H D, et al. Comparative analysis of the high-and low-ionization lines in the broad-line region of active galactic nuclei[J]. Monthly Notices of the Royal Astronomical Society, 1996, 104(1): 37-70.
    [40]
    McIntosh D H, Rix H W, Rieke M J, et al. Redshifted and blueshifted broad lines in luminous quasars[J]. The Astrophysical Journal Letters, 1999, 517(2): L73-L76.
    [41]
    Wills B J, Browne IWA. Relativistic beaming and quasar emission lines[J]. The Astrophysical Journal, 1986, 302(1): 56-63.
  • Articles Related

    [1]Zhang Shun, Yi Tingfeng, Lu He, Chen Yutong, Wang Liang, Wang Na, Pu Zhiyuan, Dong Liang. Correlation Study of TeV Blazars in Optical Band and γ-ray Band [J]. Astronomical Techniques and Instruments, 2023, 20(6): 510-517. DOI: 10.14005/j.cnki.issn1672-7673.20230913.001
    [2]Wu Yuecheng, Gong Yunlu, Feng Taotao. The Medium and Long Period Broad Band Spectral Index Characteristics of Flat Spectrum Radio Quasar 3C 454.3 [J]. Astronomical Techniques and Instruments, 2023, 20(3): 204-210. DOI: 10.14005/j.cnki.issn1672-7673.20230118.001
    [3]Pan Zuheng, Peng Qingyu, Lu Xing, Chen Xiao, Li Dan. Searching Moving Objects by Image Correlation [J]. Astronomical Techniques and Instruments, 2023, 20(1): 41-49. DOI: 10.14005/j.cnki.issn1672-7673.20221024.001
    [4]Pan Caijuan, Lin Yingru, Lu Weijian, Yang Jie. The Test of the Hardiness-duration Correlation in the Two Classes of Gamma-ray Bursts [J]. Astronomical Research and Technology, 2022, 19(6): 535-539. DOI: 10.14005/j.cnki.issn1672-7673.20220920.001
    [5]Ma Kaixuan, Zhang Haojing, Yan Peilin, Lu Lin, Zhang Huan. The Correlations of Multi-wave band Luminosity and Jet Power in Fermi Blazars [J]. Astronomical Research and Technology, 2021, 18(4): 437-444. DOI: 10.14005/j.cnki.issn1672-7673.20210112.002
    [6]Yan Peilin, Zhang Haojing, Ma Kaixuan, Lu Lin. Discussion on the Correlation between the Brightness Temperature of the Blazars and the Jet Energy of the Black Hole [J]. Astronomical Research and Technology, 2021, 18(2): 153-161. DOI: 10.14005/j.cnki.issn1672-7673.20200722.003
    [7]Zhang Xu, Zhang Xiong. The Relation between the Accretion Rate and the Jet Power [J]. Astronomical Research and Technology, 2016, 13(1): 24-30.
    [8]Zhang Xu, Zhang Xiong. A Study of Correlations between Redshifts and Spin Energies of Black Holes in AGN [J]. Astronomical Research and Technology, 2015, 12(3): 253-261.
    [9]ZHAN La-sheng, YUAN Wen-liang, MIN Qian, LI Cui-yun. Correlation between the Cycles of Solar Activities and the Flood Occurrences in the Poyang Lake [J]. Astronomical Research and Technology, 2009, 6(3): 175-180.
    [10]TANG ling, ZHANG Hao-jing, ZHENG Yong-gang, PENG Zhao-yang, ZHANG xiong. A Study of the Broad-band Spectral Indeices of Gamma-ray-loud Blazars [J]. Astronomical Research and Technology, 2008, 5(4): 337-348.

Catalog

    Article views (181) PDF downloads (22) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return